• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

90-Million-Year-Old Pollen Fossils Reveal Origins Of Asian Tropics’ Staggering Biodiversity

March 14, 2025 by Deborah Bloomfield

Two newly discovered prehistoric pollen fossils have become the stars of a new study that explores the origins of the biodiversity seen in one of the most species-rich places on Earth – the Asian tropical rainforests. Spanning 8,000 kilometers (4,971 miles) with over 20,000 islands that are home to 50,000 plant species and 7,000 vertebrate species, we don’t need to convince you that it’s a hotspot for biodiversity. What we haven’t known until now, however, is why.

ADVERTISEMENT

“Where does biodiversity come from? It’s a question many generations of biologists have spent their time thinking about,” said study author Dr Benedikt G. Kuhnhäuser in a statement. “We still understand very little about how plant and animal diversity became so rich in certain areas, such as tropical rainforests, and what causes it to spread as it does.”

Understanding the source of biodiversity is crucial for maintaining it, so Kuhnhäuser worked with a team of researchers from the Royal Botanic Gardens, Kew, and global partners to address the big question by looking at rattans – climbing palms predominantly found in tropical Asian rainforests. They used DNA sequencing technology to analyze herbarium specimens from across the globe and create a tree of life that shows how they are related to one another.

They then combined this tree of life with data from the analysis of two 90-million-year-old pollen fossils discovered 1,930 meters (6,332 feet) below ground in New Guinea. These fossils were also rattan palms, and there’s a good reason they were found so far underground.

Fossil and modern-day rattan pollen. Fossil pollen of rattan palms (top row), with highly similar pollen of modern-day rattan palms (bottom row) for comparison. Top left: Dicolpopollis cenomanicus sp. nov. Morley & Bates (Cenomanian; 100.5 to 93.9 Ma). Top right: Dicolpopollis novaguineensis sp. Nov. Morley & Bates (Cenomanian and Turonian; 100.5 to 89.8 Ma). Bottom left: Pollen of the modern-day rattan palm Calamus deerratus. Bottom right: Pollen of the modern-day rattan palm Calamus formicarius.

Fossil pollen of rattan palms (top row), with highly similar pollen of modern-day rattan palms (bottom row) for comparison.

Image credit: Chris Bates and RBG Kew

“The pollen was found by co-author and palynologist/pollen expert Chris Bates, and identified by Robert Morley, who is also a co-author,” Kuhnhäuser told IFLScience. “When companies drill for oil, they often employ palynologists to look at the pollen assemblages at different depths to reconstruct the vegetation that lived in a given geological layers.”

“In practice, this means that palynologists do the time-consuming task of counting pollen grains at different depths and determine which species they belong to. When doing this work, Chris noticed some incredibly rare pollen grains at around 1,800-1,900m [5,906-6,235 feet] below ground. These pollen grains are the two new pollen fossils described in the paper.”

This dataset made it possible to trace the evolutionary history of these climbing palms, revealing that different islands played distinct roles in biodiversity formation. Borneo, for example, was instrumental as a generator and distributor of species. New Guinea rustled up new species in isolation but didn’t influence other parts of the Asian tropics, while Sumatra acted like a corridor that enabled the spread of diversity.

The rattan palm relative Pigafetta filaris.

The rattan palm relative Pigafetta filaris.

Image credit: Benedikt Kuhnhäuser

These insights offer a new framework for understanding where biodiversity comes from, and why the Asian tropics exhibit such a mixed bag of old and new.

“Biodiversity of the Asian tropics has an incredibly dynamic history that includes ancient origins, complete extinction and re-colonisation in some regions, and recent diversification that led to the high diversity of rattan palms that we see today, with different islands playing different roles in this diversification,” said Kuhnhäuser to IFLScience. “The fossils show that rattan palms and relatives are at least 93.9 million years old, indicating that rattan relatives lived at that time in the region of what is now New Guinea.”

“However, about 90% of modern-day rattan species originated within the past 30 million years, spreading from Southeast Asia across the entire Asian tropics, with the island of Borneo playing a crucial role in generating and distributing new species. And the rattan flora that can be found on New Guinea goes back to colonisation events that happened only about 20 million years ago. This indicates that New Guinea’s rattan flora went intermittently completely extinct and was then later re-colonised,” Kuhnhäuser continued.

“I find this juxtaposition of extremely old origins of the ancestors of the palms but the quite recent origins of modern-day diversity really fascinating.”

ADVERTISEMENT

The study is published in the journal Science.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Film shines light on Mexican sweatshops at Venice festival
  2. Dash for gas sparks oil switch, pushes more suppliers to brink
  3. “The Great Stink” Engulfed London In A Cloud Of Fetid Air Back In 1858
  4. Why Are People Putting A Cup Of Ice With A Coin On Top In Their Freezer?

Source Link: 90-Million-Year-Old Pollen Fossils Reveal Origins Of Asian Tropics’ Staggering Biodiversity

Filed Under: News

Primary Sidebar

  • UK To DNA Test All Newborn Babies In Plan To Predict And Prevent Disease
  • IFLScience We Have Questions: Why Does Snow Sometimes Look Blue?
  • New Nimbus COVID Variant Present In The UK, Infections Could Spread This Summer
  • Scientists Have Finally Measured How Fast Quantum Entanglement Happens
  • Why Earth’s Magnetic Pole Reversals Are So Fascinating
  • World First Artificial Solar Eclipse Created, The “Closest Thing” To HIV Vaccine Gets FDA Approval, And Much More This Week
  • “Remarkable” Pattern Discovered Behind Prime Numbers, Math’s Most Unpredictable Objects
  • People Are Only Just Learning What The World’s Most Expensive Cheese Is Made Of
  • The Physics Behind Iron: Why It’s The Most Stable Element
  • What Is The Reason Some People Keep Waking Up At 3am Every Night?
  • Michigan Bear Finally Free After 2 Years With Plastic Lid Stuck Around Its Neck
  • Pangolins, The World’s Most Trafficked Mammal, May Soon Get Federal Protection In The US
  • Sharks Have No Bones, So How Do They Get So Big?
  • 2025 Is Shaping Up To Be A Whirlwind Year For Tornadoes In The US
  • Unexpected Nova Just Appeared In The Night Sky – And You Can See It With The Naked Eye
  • Watch As Maori Octopus Decides Eating A Ray Is A Good Idea
  • There Is Life Hiding In The Earth’s Deep Biosphere, But Not As You Know It
  • Two Sandhill Cranes Have Adopted A Canada Gosling, And It’s Ridiculously Adorable
  • Hybrid Pythons Are Taking Over The Florida Everglades With “Hybrid Vigor”
  • Mysterious, Powerful Radio Pulse Traced Back To NASA Satellite That’s Been Dead Since 1967
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version