• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

A Molecule That Drives Anxiety May Have Been Found By Researchers

April 26, 2023 by Deborah Bloomfield

Researchers have discovered a gene that they believe could be driving anxiety symptoms, potentially opening up a new therapeutic avenue. When the team modified the gene, they managed to reduce anxiety levels in animal models, suggesting the gene could be closely tied to the complex condition. 

Anxiety disorders are a set of complex conditions involving interactions between genetics and the environment, with trauma playing a critical role in their onset in many cases. Approximately one in four adults will be diagnosed with an anxiety disorder in their lifetime, but treatment remains extremely limited. 

Advertisement

Anti-anxiety medications exist, but they are limited in efficacy and less than half of the people that take them will achieve remission. This is largely due to how poorly scientists currently understand the brain circuitry that leads to these events, making understanding them the number one priority in combatting anxiety.  

To this end, researchers from the Universities of Bristol and Exeter looked to identify the underlying mechanisms behind anxiety symptoms by inducing stress in animal models and analyzing molecular events that may underpin them. They focused on a group of small molecules called microRNAs (miRNAs), which are also found in humans and bind to messenger RNA (mRNA) to stop them from producing proteins. Such miRNAs have been found to control proteins integral to processes in the amygdala, which regulates our emotions and has been implicated in anxiety disorders. 

Mice were subjected to stress and then immediately after the researchers took samples from their amygdalae for analysis. These were then compared to a control group to identify any differences during stressful events compared to standard brain activity. 

Immediately after stress, the team found a miRNA molecule called miR483-5p was increased, which they then demonstrated subsequently suppressed a gene called Pgap2. This gene is thought to drive anxiety-linked behaviors and miR483-5p acts as a stopper on this gene, regulating the amygdala’s stress response. Together, the team believes this pathway could be directly involved in anxiety symptoms. 

Advertisement

The team now want to further explore this pathway as a potential anxiety treatment option, hoping to fill a much-needed gap in treatment. 

“miRNAs are strategically poised to control complex neuropsychiatric conditions such as anxiety. But the molecular and cellular mechanisms they use to regulate stress resilience and susceptibility were until now, largely unknown. The miR483-5p/Pgap2 pathway we identified in this study, activation of which exerts anxiety-reducing effects, offers a huge potential for the development of anti-anxiety therapies for complex psychiatric conditions in humans,” said Dr Valentina Mosienko, one of the study’s lead authors, in a statement. 

The research is published in Nature Communications. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. UK PM Johnson to address lawmakers about Afghanistan on Monday
  2. Pandemic-hit Qantas weighs new pay structure to keep key executives
  3. Air New Zealand reels from Auckland curbs, Australia bubble loss
  4. Stranded Dolphins’ Brains Show Signs Of Alzheimer’s-Like Disease

Source Link: A Molecule That Drives Anxiety May Have Been Found By Researchers

Filed Under: News

Primary Sidebar

  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Interstellar Comet 3I/ATLAS Is Back From Behind The Sun – Still Not An Alien Spacecraft, Though
  • Bowhead Whales Can Live For 200 Years – This May Explain Their Extraordinary Longevity
  • Trump Orders First Nuclear Weapons Test In The US Since 1992 – Here’s What You Need To Know
  • Tiny Triceratops-Tackling Tyrannosaur Was Its Own Species, Not A Baby T. Rex
  • What Makes Ammolite Gemstones, A Rare Kind Of Fossilized Ammonite, So Vibrant? It’s All In The Nacre
  • Something Melted This Tesla’s Windscreen. Could It Have Been A World-First Meteorite Collision?
  • Carnivorous “Death-Ball” Sponge Among 30 New Deep-Sea Weirdos Discovered In The Southern Ocean
  • Chimps Can Revise Beliefs When Confronted With Conflicting Evidence. Can You?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version