• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

A New Particle Has Been Discovered – It Could Be The Elusive Glueball

May 7, 2024 by Deborah Bloomfield

Physicists might have found a glueball. This is not something you get by rubbing vinyl glue between your fingers. It is a curious interaction between the carriers of the strong nuclear force, called gluons – hence the name “glueball”.

Advertisement

Gluons carry the nuclear force between quarks, a force that is a lot weirder than the others. It doesn’t have only an attractive side like gravity or a positive and negative like electromagnetism. It is an interaction of three different charges that physicists in the 1960s called color. It is not really a color, but you will soon get the idea as to why it is called that.

Advertisement

Let’s take, for example, the proton: the particle that is found at the center of atomic nuclei. It is made of three quarks, and it doesn’t have a new charge from the strong nuclear force. So, the charge of the three quarks needs to cancel out. Each quark has a different color charge: blue, green, or red. Together, they cancel each other out, like how lights of those colors can create white light.

But there are also particles called mesons that are made of one quark and one antiquark. They too have no color, so it stands that there must exist an antiblue, antigreen, and antired. Gluons carry the strong nuclear force, and in a way, they are a mixture of colors. They do interact with quarks, but they can interact with other gluons as well. And this is where the physics gets interesting – the gluons can form a particle without the need for quarks.

The theory is there, but finding it is another question altogether. Enter the Beijing Spectrometer III (BES III), a particle collider great at forming a specific type of meson: the (J/psi) meson, also written J/ψ. It consists of a charm quark and charm antiquark and like all mesons, it is unstable and doesn’t last long. And in its decay, there’s fun stuff.

We have previously reported that researchers in the collaboration are believed to have found a rare combination of a proton and an antiproton. From studying over 10 billion J/ψ decaying, researchers are also confident to have found a new particle dubbed X(2370).

Advertisement

The number in the bracket represents its mass in megaelectronvolts over the speed of light squared. You get a lot of decimal points if you measure a particle’s mass in grams or ounces. But 2370 was only the first estimate. The latest work places the actual mass around 2395 MeV/c2 and there is a theoretical expectation that a glueball should exist at that mass.

Now, the observations are indeed consistent with this fabled particle and the results are likely the strongest ever result in favor of the existence of glueballs. But it is not incontrovertible proof of a glueball. Another interaction between quarks and antiquarks might create this particle, and there also seems to be a few too many produced by the J/ψ decay. More work will be needed to prove or disprove the glueball nature of this particle.

The study is published in the journal Physical Review Letters.

[H/T: Big Think]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. Soccer-Liverpool’s Alexander-Arnold ruled out of Man City game
  3. What Are Baby Platypuses Called?
  4. Should You Wash Chicken Before Cooking It?

Source Link: A New Particle Has Been Discovered – It Could Be The Elusive Glueball

Filed Under: News

Primary Sidebar

  • There Used To Be 27 Letters In The English Alphabet, Until One Mysteriously Vanished
  • Why You Need To Stop Chucking That “Liquid Gold” Down Your Kitchen Sink
  • Youngest Mammoth Fossils Ever Found Turn Out To Be Whales… 400 Kilometers From The Coast
  • The First Wheelchair User To Travel To Space Is About To Make History
  • “It Was Bigger Than A Killer Whale”: 66 Million-Year-Old Tooth Suggests Mosasaurs Were Hunting In Rivers, Not Just Seas
  • Killer Whales And Dolphins Team Up In First-Ever Footage Of Cooperative Hunting
  • Why Does Chocolate In Advent Calendars Taste Different From Normal Chocolate?
  • Why Do Sheep And Goats Have Rectangular Pupils?
  • What Kind Of Parents Were Dinosaurs?
  • First Images Of A Tatooine-Like Planet That Orbits Its Two Stars Closer Than We’ve Seen Before
  • JWST Finds Earliest Supernova Yet, From When The Universe Was Just 730 Million Years Old
  • How A Comet On Christmas Day Changed What We Knew About Space
  • What Color Was Diplodocus? First-Ever Sauropod Fossils With Melanosomes Bring Us A Step Closer To Finding Out
  • Why Do NASA’s Voyager Spacecraft Sometimes Get Closer To Earth, As They Head Out Of The Solar System?
  • What Is The Fastest Animal In The World?
  • Would The Burglars Have Survived “Home Alone”? We Asked An Intensive Care Doctor
  • World’s First-Ever Dictionary Of Ancient Celtic Languages Set To Be Created
  • Fresh From Capturing Image Of 3I/ATLAS, NASA’s MAVEN Suffers “Anomaly” And Is No Longer Communicating With Earth
  • Thought “Superflu” Was Bad? Strap In: It’s Norovirus Season In The US
  • Why Does Evolution Turn Everything Into Crabs?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version