• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

A New Particle Has Been Discovered – It Could Be The Elusive Glueball

May 7, 2024 by Deborah Bloomfield

Physicists might have found a glueball. This is not something you get by rubbing vinyl glue between your fingers. It is a curious interaction between the carriers of the strong nuclear force, called gluons – hence the name “glueball”.

Advertisement

Gluons carry the nuclear force between quarks, a force that is a lot weirder than the others. It doesn’t have only an attractive side like gravity or a positive and negative like electromagnetism. It is an interaction of three different charges that physicists in the 1960s called color. It is not really a color, but you will soon get the idea as to why it is called that.

Advertisement

Let’s take, for example, the proton: the particle that is found at the center of atomic nuclei. It is made of three quarks, and it doesn’t have a new charge from the strong nuclear force. So, the charge of the three quarks needs to cancel out. Each quark has a different color charge: blue, green, or red. Together, they cancel each other out, like how lights of those colors can create white light.

But there are also particles called mesons that are made of one quark and one antiquark. They too have no color, so it stands that there must exist an antiblue, antigreen, and antired. Gluons carry the strong nuclear force, and in a way, they are a mixture of colors. They do interact with quarks, but they can interact with other gluons as well. And this is where the physics gets interesting – the gluons can form a particle without the need for quarks.

The theory is there, but finding it is another question altogether. Enter the Beijing Spectrometer III (BES III), a particle collider great at forming a specific type of meson: the (J/psi) meson, also written J/ψ. It consists of a charm quark and charm antiquark and like all mesons, it is unstable and doesn’t last long. And in its decay, there’s fun stuff.

We have previously reported that researchers in the collaboration are believed to have found a rare combination of a proton and an antiproton. From studying over 10 billion J/ψ decaying, researchers are also confident to have found a new particle dubbed X(2370).

Advertisement

The number in the bracket represents its mass in megaelectronvolts over the speed of light squared. You get a lot of decimal points if you measure a particle’s mass in grams or ounces. But 2370 was only the first estimate. The latest work places the actual mass around 2395 MeV/c2 and there is a theoretical expectation that a glueball should exist at that mass.

Now, the observations are indeed consistent with this fabled particle and the results are likely the strongest ever result in favor of the existence of glueballs. But it is not incontrovertible proof of a glueball. Another interaction between quarks and antiquarks might create this particle, and there also seems to be a few too many produced by the J/ψ decay. More work will be needed to prove or disprove the glueball nature of this particle.

The study is published in the journal Physical Review Letters.

[H/T: Big Think]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  2. Soccer-Liverpool’s Alexander-Arnold ruled out of Man City game
  3. What Are Baby Platypuses Called?
  4. Should You Wash Chicken Before Cooking It?

Source Link: A New Particle Has Been Discovered – It Could Be The Elusive Glueball

Filed Under: News

Primary Sidebar

  • Crows Can Hold A Grudge Way Longer Than You Can
  • Scientists Say The Human Brain Has 5 “Ages”. Which One Are You In?
  • Human Evolution Isn’t Fast Enough To Keep Up With Pace Of The Modern World
  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Is The Perfect Pebble The Key To A Prosperous Penguin Partnership?
  • Krampusnacht: What’s Up With The Terrifying Christmas-Time Pagan Parades In Europe?
  • Why Does The President Pardon A Turkey For Thanksgiving?
  • In 1954, Soviet Scientist Vladimir Demikhov Performed “The Most Controversial Experimental Operation Of The 20th Century”
  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version