• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

After Five Centuries, Leonardo Da Vinci’s Bubble Mystery Finally Has An Answer

January 18, 2023 by Deborah Bloomfield

If you’ve ever watched air bubbles rising through water, you may have pondered the same thing as Leonardo Da Vinci: why don’t all of them travel straight to the surface? If so, you were more than 500 years too late, and probably insufficiently famous, for people to take much notice of your question, but the good news is you’re alive to get an answer.

The most curious thing about Leonardo’s observation is that it is only the larger bubbles that zig-zag or spiral to the surface, not the small ones, even though the same physical forces are acting on each.

Advertisement

In Proceedings of the National Academy of Sciences, Professor Miguel Herrada of the University of Seville and Professor Jens Eggers of the University of Bristol provide an answer to this conundrum, one they hope will lead to new advances in understanding liquid/gas interfaces.

Herrada and Eggers noted that not only has bubble movement never been explained, but it also hasn’t been mathematically described.

In the Codex Leicester Leonardo sketched the spiral motion of an ascending bubble, but it's very unlikely even he knew why.

In the Codex Leicester, Leonardo sketched the spiral motion of an ascending bubble, but it’s very unlikely even he knew why. Image credit: Universidad de Sevilla, Public Domain

The authors observe a number of aspects of bubble movement which make them difficult to model, despite how common the phenomenon is. Most importantly they write: “The bubble deforms in response to the forces exerted by the fluid, and in turn, the shape of the bubble changes the character of the flow.”

Advertisement

Experiments have their own problems since even tiny contamination with surfactants such as soaps can affect bubble behavior.

Undaunted, Herrada and Eggers applied mathematical models and compared their findings with previous experiments done in “hyper-clean water”. They found rising bubbles undergo a periodic tilt that changes their shape. The side pointing up has higher curvature, which makes the surface more slippery, so water moves over it faster. This, by Bernoulli’s somewhat counterintuitive principle, lowers the pressure on that side, pushing the bubble back to its original position before the cycle starts again.

The modeling predicts this process should cause bubbles with a radius of more than 0.926 millimeters (0.04 inches) to wobble, deviating from a straight trajectory. The crucial size is within 2 percent of the value obtained in the ultraclean water.

Advertisement

The authors suggest the next step is to study how contamination affects the results. If hyper-clean water had been available in the 16th Century fewer people might have died from drinking it, so it’s reasonable to assume Leonardo made his observations while dealing with a certain level of impurity. Even today, very pure water is rare outside the lab, so this sort of extension is probably necessary if there are to be practical applications of the work.

The paper is open access in Proceedings of the National Academy of Sciences. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. U.S. House Democrats propose EV tax credits of up to $12,500
  2. Ads Distort How Much Biden’s Tax Plans Could Cost ‘Your Family’
  3. NBA-Unvaccinated players to face extensive COVID-19 curbs – memo
  4. Could Dragons On Westeros Fly? Aeronautical Engineering And Math Say They Could

Source Link: After Five Centuries, Leonardo Da Vinci’s Bubble Mystery Finally Has An Answer

Filed Under: News

Primary Sidebar

  • Wondrous And Worrying Sights: What Explorers Discovered At The Bottom Of The Great Blue Hole
  • What’s The Biggest Volcano In The World? It Depends How You’re Measuring
  • “Every Species On The Planet Self-Medicates In Some Way”: How Wild Animals Use Medicine
  • Deepest Complex Ecosystem Ever Discovered 10 Kilometers Below The Sea, 892-Kilometer “Megaflash” Lightning Sets New World Record, And Much More This Week
  • The Life And Death Of David Vetter, The Boy Who Lived His Whole Life In A Bubble
  • Time’s Arrow Within Glass Appears To Go Both Ways, Raising Huge Questions
  • World’s “Oldest Baby” Born From Embryo Frozen In 1994 In New World Record
  • What Can Spain’s “Tunnel Of Bones” Tell Us About The Fate Of Human Species On The Brink Of Extinction?
  • Rhino Horns Go Radioactive As Anti-Poaching Project Gets Off The Ground
  • Manta Rays Officially Get Third New Species – 15 Years After First Suspected
  • “Space Hurricanes” Are Happening At Earth’s Poles – And They Can Affect GPS Signals
  • There Is A Crucial Reason Why We Will Never See The Big Bang Directly With Our Telescopes
  • How Does An MRI Machine Work?
  • Catch A Glimpse Of One Of The World’s Rarest Sharks In Dreamy New Footage
  • A One-Shot Vaccine For HIV Might Actually Be On The Cards
  • Chikungunya Virus Is Spreading In China: As CDC Considers Travel Advisory, Here’s What To Know
  • First-Of-Its-Kind Vagus Nerve Implant Gets FDA Approval As A Therapy For Rheumatoid Arthritis
  • First Time Crystal Made Of “Exotic” Giant Atoms 1,000 times Larger Than Hydrogen
  • Prehistoric Humans Began Eating Tubers 700,000 Years Before Our Teeth Evolved To Do So
  • The World’s Oldest Wild Bird “Surprised” Everyone With A Hatched Chick At 74
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version