• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Bacteria Gone Bad Could Have A Surprisingly Simple Cause

February 21, 2024 by Deborah Bloomfield

The common bacteria Escherichia coli usually lives harmlessly in our guts, but sometimes escapes to cause serious disease in other organs. Analysis of the difference between the disease-causing “bad bacteria” and the non-toxic “good” versions reveals the harmful ones have lost the capacity to produce cellulose.

Besides its role as an indicator of the health of pollutants in waterways, E. coli is possibly best known for causing diarrhea, sometimes fatally. That is far from the only way it can afflict humanity, however. It’s responsible for 80 percent of urinary tract infections, as well as neonatal meningitis, and a quarter of bloodstream infections. Yet most E. coli are harmless, despite being the same species as the pathogens.

Advertisement

Central to the problem of most pathogenic E. coli is the capacity to escape the digestive system to wreak havoc elsewhere. Professor Mark Schembri of the University of Queensland led a team exploring what distinguished the escaping E. coli from those that know their place. They found mutations affecting the pathway that causes the production of cellulose, which normal E. coli make.

“All E. coli have the capacity to produce cellulose,” Schembri told IFLScience. “It exists in core genes. It’s really intriguing therefore that some have the pathway blocked. This isn’t associated with new genes, but a deterioration of the pathway.”

The cellulose is one of several polysaccharides that surround good E. coli cells. These, Schembri told IFLScience, mask other factors and keep the cell quiet from the perspective of the immune system. “If the pathway is closed it exposes other factors that initiate an immune response, which causes inflammation,” Schembri said. That not only makes for an unpleasant time in the guts, but it creates an opportunity for the E. coli to escape to the bloodstream and infect other organs.

Rather than good and bad E. coli having lived beside each other after some ancient separation, Schembri and his team found multiple mutation events producing the same outcome. In other words, the same thing keeps happening, leading to the appearance of new pathogenic strains.

Advertisement

For good and bad E. coli to both flourish there must be an evolutionary tradeoff, with pros and cons to cellulose production for the bacteria. Schembri told IFLScience his team don’t understand what these are yet, but think it probably reflects the wide diversity of environments in which E. coli live, with some being more amenable to the cellulose producers, and others to those that don’t produce it.

Having taken a wide sample of E. coli from organs outside the digestive system, Schembri’s team think cellulose non-production is the common feature. “We didn’t study E. coli that causes diarrhea,” Schembri told IFLScience. However, he noted that one particularly devastating diarrhea-inducing strain, which infected at least 4,000 people in Germany and killed 53, also lacked the capacity to produce cellulose, which Schembri says is “part of what made it bad.”



The significance could stretch beyond E. coli. The team investigated the related bacterium Shigella, and found it cannot produce cellulose. Meanwhile, Salmonella behaves similarly to E. coli, with mutations to the cellulose pathway associated with toxicity.

Advertisement

Without exploring further, the team can’t say which other pathogenic bacteria have the same issue. Nevertheless, Schembri noted to IFLScience that even where cellulose may not be involved, something similar may occur with the other polysaccharides on the cell surface.

“In 2019 alone, almost 5 million deaths worldwide were associated with bacterial antibiotic resistance, with E. coli causing more than 800,000 of these deaths,” Schembri said in a statement. “As the threat of superbugs that are resistant to all available antibiotics increases worldwide, finding new ways to prevent this infection pathway is critical to reduce the number of human infections.”

It’s unlikely that we can simply switch cellulose production back on to prevent disease. Schembri told IFLScience the team have not worked out a way their discovery can be applied. Nevertheless, he added: “Now we have better knowledge we can use it to build diagnostics. There also appears to be a connection [between cellulose non-production] and antibiotic resistance.” This may be something we can exploit in our battle against disease, but, Schembri acknowledged, “applications are a fair way off.”

The study is open access in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. JPMorgan slashes price target for troubled China property giant Evergrande
  2. Generali’s top investor ups voting stake ahead of AGM pick of CEO
  3. Stone Penis Found In Ruins Of Spanish Castle Was A Warrior’s Best Friend
  4. Giant Predatory Worms Dating Back 518 Million Years Found In Greenland

Source Link: Bacteria Gone Bad Could Have A Surprisingly Simple Cause

Filed Under: News

Primary Sidebar

  • Large Igneous Provinces: The Volcanic Eruptions That Make Yellowstone Look Like A Hiccup
  • Why Tokyo Is No Longer The World’s Most Populous City, According To The UN
  • A Conspiracy Theory Mindset Can Be Predicted By These Two Psychological Traits
  • Trump Administration Immediately Stops Construction Of Offshore Wind Farms, Citing “National Security Risks”
  • Wyoming’s “Mummy Zone” Has More Surprises In Store, Say Scientists – Why Is It Such A Hotspot For Mummified Dinosaurs?
  • NASA’s Hubble Space Telescope Observations Resolve “One Of The Biggest Mysteries” About Betelgeuse
  • Major Revamp Of US Childhood Vaccine Schedule Under RFK Jr.’s Leadership: Here’s What To Know
  • 20 Delightfully Strange New Deep Reef Species Discovered In “Underwater Hotels”
  • For First Time, The Mass And Distance Of A Solitary “Rogue” Planet Has Been Measured
  • For First Time, Three Radio-Emitting Supermassive Black Holes Seen Merging Into One
  • Why People Still Eat Bacteria Taken From The Poop Of A First World War Soldier
  • Watch Rare Footage Of The Giant Phantom Jellyfish, A 10-Meter-Long “Ghost” That’s Only Been Seen Around 100 Times
  • The Only Living Mammals That Are Essentially Cold-Blooded Are Highly Social Oddballs
  • Hottest And Earliest Intergalactic Gas Ever Found In A Galaxy Cluster Challenges Our Models
  • Bayeux Tapestry May Have Been Mealtime Reading Material For Medieval Monks
  • Just 13 Letters: How The Hawaiian Language Works With A Tiny Alphabet
  • Astronaut Mouse Delivers 9 Pups A Month After Return To Earth
  • Meet The Moonfish, The World’s Only Warm-Blooded Fish That’s 5°C Hotter Than Its Environment
  • Neanderthals Repeatedly Dumped Horned Skulls In This Cave For An Unknown Ritual Purpose
  • Will The Earth Ever Stop Spinning?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version