• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

“Barbenheimer Star” Loaded With Heavy Metals Is Unlike Anything Scientists Have Seen Or Expected

January 16, 2024 by Deborah Bloomfield

Astronomers have detected a star with such curious composition they conclude it must have been enriched by a supernova that didn’t accord with our current understanding of exploding stars. Their efforts to reconstruct this event reveal we’ve probably been missing something big about the behavior of the first generation of giant stars.

In 1999, the Sloan Digital Sky Survey (SDSS) detected a giant red star at a distance of 13,000 light-years that was given the label J0931+0038. The star was unusual in its color and location in the galactic halo, but not exceptionally so, leading to it being ignored for more than 20 years before the SDSS got around to taking its spectrum last year.

Advertisement

“As soon as I saw the spectrum, I immediately emailed the rest of the team to talk about how to learn more,” Dr Alex Ji of the University of Chicago said in a statement. 

The first stars were nothing but hydrogen and helium – but they produced heavier elements, which have been incorporated into subsequent generations. Certain elements tend to accompany each other. For example, the total amount of heavier elements in a star is often summarized on the basis of the ratio of iron to hydrogen, because the iron gives a decent starting point to estimate the abundance of everything else.

However, sometimes, stars don’t follow the rules, and J0931+0038 is an extreme example. All the elements with odd numbers on the periodic table are scarce there compared to the even-numbered ones on either side. There’s a peak in abundance of elements just above iron in atomic weight like nickel and zinc, compared to those just below like titanium, and also a lot of heavy elements like palladium. 

“We sometimes see one of these features at a time,” said Professor Jennifer Johnson of Ohio State University, “But we’ve never before seen all of them in the same star.”

Advertisement

Despite its likely great age, J0931+0038 would only have produced helium and perhaps a little carbon itself, so the other elements are a legacy of the supernova whose products make it up. To produce such an unusual combination, this must have been an extraordinary explosion. In a nod to last year’s popular culture sensation, the SDSS team nicknamed it the Barbenheimer Star. After all, the subject of one of these movies engages in a lot of element creation, albeit through fission rather than fusion, and the other film is quite the spectacle.

Now the quest is on to identify the nature of the Barbenheimer star. The team thinks it must have fallen into a mass gap, with a mass 50-80 times that of the Sun. It had been thought stars that massive would collapse directly into black holes, rather than undergoing supernova explosions – but so far, no one has been able to explain J0931+0038 any other way.

“Amazingly, no existing model of element formation can explain what we see,” Dr Sanjana Curtis of the University of California, Berkeley said. “It’s not just ‘ok, you can tweak something here and there and it’ll work out – the whole pattern of elements almost seems self-contradictory.”

“We think it’s possible it could have been energetic enough to blow up an entire galaxy by itself, though a small galaxy,” Ji said in a different statement.

Advertisement

“The Universe directed this movie, we are just the camera crew,” said Dr Keith Hawkins of the University of Texas at Austin. “We don’t yet know how the story will end.”

Seven frames from the 13 billion year Barbenheimer star movie, and it's sequel in the star Jo931+0038 and its discovery by us

Seven frames from the 13 billion year Barbenheimer star movie, and its sequel in the star Jo931+0038 and its discovery by us

Image and illustration credits: NASA, ESA, CSA, StSci, University of Chicago, SDSS-V, S5, Melissa Weiss, James Josephides, Yuri Beletsky

Although theoretical physicists will no doubt put great effort into modeling the sort of explosion that could produce this combination of elements, the key to resolving the mystery is probably to find similar stars. Ideally, we might catch a Barbenheimer-style supernova in the act, but more stars with compositions similar to J0931+0038 would also help. 

Stars with masses more than 50 times that of the Sun exist today, but they’re very rare. However, they are thought to have been more common in the early universe when the Barbenheimer star formed, so there should be more stars like J0931+0038 out there created from their deaths.

Consider: centuries from now, when the two massive cinematic hits are forgotten (let alone their simultaneous release), astronomers may still be referring to a class of rare objects as Barbenheimer stars, with few knowing why.

Advertisement

The discovery and preliminary analysis is to be published in the Astrophysical Journal Letters, preprint on ArXiv.org

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-‘Experienced’ Medvedev the last hurdle in Djokovic’s pursuit of history
  2. Bulk of S&P 500 embraces sustainable accounting standard, foundation says
  3. PideDirecto bags $5.25M; aims to be ‘Shopify with 30-minute deliveries’
  4. A Spy Creature Gets Its Shell Home Stolen In BBC’s New “Spy In The Ocean”

Source Link: “Barbenheimer Star” Loaded With Heavy Metals Is Unlike Anything Scientists Have Seen Or Expected

Filed Under: News

Primary Sidebar

  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Mysterious 7-Million-Year-Old Ape May Be Earliest Hominin To Walk On Two Feet
  • This Spider-Like Creature Was Walking Around With A Tail 100 Million Years Ago
  • How Do GLP-1 Agonists Like Ozempic and Wegovy Work?
  • Evolution In Action: These Rare Bears Have Adapted To Be Friendlier And Less Aggressive
  • Nearly 100 Years After Debating Bohr On Quantum Mechanics, New Experiment Proves Einstein Wrong – Again
  • 9,500-Year-Old Headless Skeleton Is New World’s Oldest Known Cremated Adult
  • World’s Longest Jellyfish Can Reach A Whopping 36 Meters, Even Bigger Than A Blue Whale
  • In 1994, December 31 Was Wiped From Existence In Kiribati
  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • The World’s Largest Living Reptile Can “Surf” Over 10 Kilometers To Get Between Islands
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version