• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Biological Processes Shape Arsenic’s Distribution In The Atmosphere More Than Previously Thought

January 10, 2025 by Deborah Bloomfield

Researchers at ETH Zurich have found traces of arsenic in particulate matter, clouds, and rainwater. Using new optimized measurement techniques, they have identified various ways that the toxic substance is transported into the atmosphere. Among these is a surprising route that involves previously underappreciated biological processes.

Advertisement

Arsenic is a naturally occurring but highly toxic element that is classified as a Group 1 carcinogen – meaning there is enough evidence to demonstrate it can cause cancer – by the International Agency for Research and Cancer (IARC).

Advertisement

For years, Lenny Winkel, a professor at the Institute of Biogeochemistry and Pollutant Dynamics at ETH Zurich, and colleagues have been exploring the presence of this element in the atmosphere. Although arsenic is widely distributed across the Earth’s crust, it is also present in the air, on land, and in water. At present, it is estimated that around 31 tonnes of it is in the atmosphere, the majority of which has been put there by human activity – from minding, landfills, and the burning of fossil fuels that produce inorganic arsenic.

However, air pollution controls introduced to North America and Europe during the last few decades have led to a decrease in the amount of arsenic emissions being produced. Still, the long-term effects of it in the atmosphere remain a concern and need monitoring.

During their latest research, Winkel and colleagues carried out extensive measurements at the Pic du Midi research station located 2,877 meters (9,439 feet) above sea level in the Pyrenees mountains. At this height, it becomes possible for researchers to examine arsenic in the atmosphere without worrying about the influence of local sources of pollution.

The team found that, on average, the clouds surrounding Pic du Midi contained significantly higher levels of arsenic on average than rainwater. But while this may be an alarming result, it is not likely enough to cause individuals any harm.

Advertisement

“The arsenic is very diluted in the atmosphere,” Winkel explained in a statement. The level is so low, in fact, that the researchers had to adjust their measurements to detect it.

So how is this lower level of arsenic getting into the atmosphere? The team created a model of air mass movement and conducted an analysis of clouds and rainwater, which led to a range of transport patterns being identified. This allowed them to figure out where the arsenic in each sample came from.

For example, for samples that contained large amounts of sodium, the researchers believe it likely came from the sea where it was mixed up with sodium chloride as it traveled towards the Pyrenees.

They also found samples with organic carbon dissolved in them.

Advertisement

“It can come from natural sources such as plants and pollen. But it can also be due to human-induced environmental pollution from transport or industry,” Esther Breuninger, the first author of the team’s new paper added.

“In any case, the dissolved organic carbon indicates that the arsenic must have travelled over land masses before it ended up in our sample.”

In addition, the team found rainwater samples with methylated arsenic compounds in them. These compounds are produced when organisms like bacteria, algae, plants, or fungi absorb inorganic arsenic and then excrete it in an organic form. The new research indicates that this conversion takes place in both the sea and on land.

“Until now, it was assumed that human activities such as the burning of coal or the smelting of ores were mainly responsible for atmospheric arsenic,” said Winkel. However, in some cloud samples, methylated compounds made up the majority of the arsenic detected. “These results show that biological processes play a more important role than previously assumed,” Winkel added, concluding that factoring this finding into future modeling will be essential.

Advertisement

The study is published in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Dinosaur Prints Found Under Restaurant Table Confirmed As 100 Million Years Old
  3. Archax: Japanese Engineers Make Transformer Robot That Actually Works
  4. How Do We Know There Is Anything Beyond The Observable Universe?

Source Link: Biological Processes Shape Arsenic's Distribution In The Atmosphere More Than Previously Thought

Filed Under: News

Primary Sidebar

  • The Most Devastating Symptom Of Alzheimer’s Finally Has An Explanation – And, Maybe Soon, A Treatment
  • Kissing Has Survived The Path Of Evolution For 21 Million Years – Apes And Human Ancestors Were All At It
  • NASA To Share Its New Comet 3I/ATLAS Images In Livestream This Week – Here’s How To Watch
  • Did People Have Bigger Foreheads In The Past? The Grisly Truth Behind Those Old Paintings
  • After Three Years Of Searching, NASA Realized It Recorded Over The Apollo 11 Moon Landing Footage
  • Professor Of Astronomy Explains Why You Can’t Fire Your Enemies Straight Into The Sun
  • Do We All See The Same Blue? Brilliant Quiz Shows The Subjective Nature Of Color Perception
  • Earliest Detailed Observations Of A Star Exploding Show True Shape Of A Supernova
  • Balloon-Mounted Telescope Captures Most Precise Observations Of First Known Black Hole Yet
  • “Dawn Of A New Era”: A US Nuclear Company Becomes First Ever Startup To Achieve Cold Criticality
  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • This 12,000-Year-Old Artwork Shows An “Extraordinary” Moment In History And Human Creativity
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version