• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Breakthrough 3D Bioprinted Mini Placentas May Help Solve “One Of Medicine’s Great Mysteries”

September 19, 2025 by Deborah Bloomfield

In a major breakthrough for pregnancy research, scientists have 3D bioprinted “mini placentas”. The miniature organs, or “organoids”, closely resemble human placental tissue, providing an accurate model for studying the early placenta – something that has been sorely lacking until now. 

The placenta plays a vital role in supporting fetal development, and its dysfunction is linked to numerous pregnancy complications, including miscarriage, preeclampsia, preterm birth, and stillbirth. These conditions can also have long-term health implications for both mother and baby, increasing the risk of future cardiovascular, endocrine, and neurological diseases. Yet, treatment options are limited, as is our understanding of placental biology.

“Serious pregnancy complications like preeclampsia remain one of medicine’s great mysteries, largely because current animal and cell models cannot accurately replicate the human placenta,” Associate Professor Lana McClements, co-lead author of a study presenting the latest findings, explained in a statement.

“Obtaining first trimester placental tissue is not practical or safe, making early pregnancy challenging to study. By the time a baby is born, the placenta has changed so much that it no longer reflects what it was like in early pregnancy.”

This is where organoids come in. Organoids are 3D bundles of cells that mimic the structure, function, and biological complexity of organs but on a much smaller and simpler scale. In the past, scientists have created organoids from a number of human tissues – from “mini-brains” to testicles – and used them to model diseases and test drugs.

Placenta organoids were first described in 2018, grown from trophoblasts – a type of cell found only in the placenta. While they have been invaluable in studying placental development and complications in early pregnancy, current methods for producing them rely on animal-derived matrices, which introduce variability and limit reproducibility, therefore hindering their potential.

To address these shortcomings, the team behind the latest study turned to bioprinting – a type of 3D printing that uses living cells and cell-friendly materials to create 3D structures. They took trophoblast cells and mixed them with a synthetic gel before 3D-printing them in precise droplets.

The printed cells then grew into miniature placentas, and the researchers compared them to organoids made via traditional manual methods. 

“The organoids we grew in the bioprinted gel developed differently to those grown in an animal-derived gel, and formed different numbers of trophoblast sub-types. This highlighted that the environment organoids are grown in can control how they mature,” first author Dr Claire Richards said.

“We showed these organoids were very similar to human placental tissue, providing an accurate model of the early placenta. This means we can start piecing together the puzzle of pregnancy complications and test new drugs safely.”

As a start, the team exposed their organoids to an inflammatory molecule found at high levels in people with preeclampsia, and then trialed a few potential therapeutics.

“As we refine these models, we move closer to a future where pregnancy complications can be predicted, prevented, and treated before they put lives at risk,” Richards added.

The study is published in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Russia moves Sukhoi Su-30 fighter jets to Belarus to patrol borders, Minsk says
  2. French senators to visit Taiwan amid soaring China tensions
  3. Moon’s Magnetic Field Experienced Mysterious Resurgence 2.8 Billion Years Ago Before Disappearing
  4. New Species Of Flapjack Octopus, A Shape-Shifting Cephalopod Of The Deep, Found In Australia

Source Link: Breakthrough 3D Bioprinted Mini Placentas May Help Solve “One Of Medicine’s Great Mysteries”

Filed Under: News

Primary Sidebar

  • Have We Finally “Seen” Dark Matter? Galactic Gamma-Ray Halo May Be First Direct Evidence Of Universe’s Invisible “Glue”
  • What Happens When You Try To Freeze Oil? Because It Generally Doesn’t Form An Ice
  • Cyclical Time And Multiple Dimensions Seen in Native American Rock Art Spanning 4,000 Years Of History
  • Could T. Rex Swim?
  • Why Is My Eye Twitching Like That?!
  • First-Ever Evidence Of Lightning On Mars – Captured In Whirling Dust Devils And Storms
  • Fossil Foot Shows Lucy Shared Space With Another Hominin Who Might Be Our True Ancestor
  • People Are Leaving Their Duvets Outside In The Cold This Winter, But Does It Actually Do Anything?
  • Crows Can Hold A Grudge Way Longer Than You Can
  • Scientists Say The Human Brain Has 5 “Ages”. Which One Are You In?
  • Human Evolution Isn’t Fast Enough To Keep Up With Pace Of The Modern World
  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Is The Perfect Pebble The Key To A Prosperous Penguin Partnership?
  • Krampusnacht: What’s Up With The Terrifying Christmas-Time Pagan Parades In Europe?
  • Why Does The President Pardon A Turkey For Thanksgiving?
  • In 1954, Soviet Scientist Vladimir Demikhov Performed “The Most Controversial Experimental Operation Of The 20th Century”
  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version