• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Breakthrough Nuclear Fusion Experiment Confirmed To Have Produced More Energy Than Was Put In

February 5, 2024 by Deborah Bloomfield

The age of nuclear fusion is upon us. After decades of work by thousands of scientists, this fabled tree has started bearing its fruit: it is possible to have a fusion reaction on Earth that releases more energy than what is put in. The breakthrough, announced in late 2022, has now been confirmed. Fusion breakeven has happened. And that is not all – a series of papers highlight how there’s a lot to be hopeful about too.

Nuclear fusion is constantly happening in stars. Lighter elements, usually hydrogen, are fused into heavier ones. This reaction releases a lot of energy that goes on to power the stars. A consequence dear to us in the case of the Sun is that part of that energy powers life on Earth. Since we worked out how fusion works last century, humans have wondered if we can control it and use it for ourselves. The answer so far has been “sort of”.

Advertisement

In the lab, we can’t reproduce the conditions that are found at the center of stars: the enormous pressures and high temperatures that push elements to naturally fuse, releasing energy. To achieve that in the lab, we need to provide much higher temperatures – and that requires energy. So the goal for quite a while has been to get a fusion reaction that produces more energy than it needs to get started, with different designs aiming to make that happen.

The first one to have crossed that line is the National Ignition Facility (NIF) experiment. This approach is known as Inertial Fusion. Powerful lasers are sent into a capsule (known as a hohlraum) that contains a pellet that has two types of heavy hydrogen. The lasers interact with the hohlraum, releasing an incredible amount of x-rays that slam onto the fuel, starting the fusion process.

On December 5, 2022, the system released 3.1 MegaJoules of fusion yield. Given that the laser pulse required 2.05 MegaJoules, the system produced more than 150 percent of the energy needed to start it.

Having surpassed the “scientific breakeven” is truly a breakthrough – but it is not enough for a full-scale power plant. The yield needs to be over 10 times the initial energy to make sense. For this reason, the team has taken the time to study in detail everything that happened 14 months ago. One intriguing event was that the fusion led to a reheating of the hohlraum to energies higher than what the laser could have supplied.

Advertisement

“In summary, we have observed for the first time substantial reheating of indirect-drive hohlraums from burning fusion capsules, at levels comparable, and exceeding, the original NIF laser drive,” the scientists wrote in one of the five papers presented today.

The ability to create a stable burning plasma might be the game-changer scenario to bring Inertial Fusion to a real-life power plant.

Three papers published today, including the one quoted above, are published in the journal Physical Review Letters (here, here, and here). The other two are published in the journal Physical Review E (here and here).

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Breakthrough Nuclear Fusion Experiment Confirmed To Have Produced More Energy Than Was Put In

Filed Under: News

Primary Sidebar

  • We Finally Know Where Pet Cats Come From – And It’s Not Where We Thought
  • Why The 17th Century Was A Really, Really Dreadful Time To Be Alive
  • Why Do Barnacles Attach To Whales?
  • You May Believe This Widely Spread Myth About How Microwave Ovens Work
  • If You Had A Pole Stretching From England To France And Yanked It, Would The Other End Move Instantly?
  • This “Dead Leaf” Is Actually A Spider That’s Evolved As A Master Of Disguise And Trickery
  • There Could Be 10,000 More African Forest Elephants Than We Thought – But They’re Still Critically Endangered
  • After Killing Half Of South Georgia’s Elephant Seals, Avian Flu Reaches Remote Island In The Indian Ocean
  • Jaguars, Disease, And Guns: The Darién Gap Is One Of Planet Earth’s Last Ungovernable Frontiers
  • The Coldest Place On Earth? Temperatures Here Can Plunge Down To -98°C In The Bleak Midwinter
  • ESA’s JUICE Spacecraft Imaged Comet 3I/ATLAS As It Flew Towards Jupiter. We’ll Have To Wait Until 2026 To See The Photos
  • Have We Finally “Seen” Dark Matter? Galactic Gamma-Ray Halo May Be First Direct Evidence Of Universe’s Invisible “Glue”
  • What Happens When You Try To Freeze Oil? Because It Generally Doesn’t Form An Ice
  • Cyclical Time And Multiple Dimensions Seen in Native American Rock Art Spanning 4,000 Years Of History
  • Could T. Rex Swim?
  • Why Is My Eye Twitching Like That?!
  • First-Ever Evidence Of Lightning On Mars – Captured In Whirling Dust Devils And Storms
  • Fossil Foot Shows Lucy Shared Space With Another Hominin Who Might Be Our True Ancestor
  • People Are Leaving Their Duvets Outside In The Cold This Winter, But Does It Actually Do Anything?
  • Crows Can Hold A Grudge Way Longer Than You Can
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version