• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proof

July 24, 2024 by Deborah Bloomfield

A new class of antibiotics is offering real hope of a response to the problem of antimicrobial resistance, hitting bacteria with a dual-pronged assault that’s almost impossible to combat. Called macrolones, the drugs target two bacterial processes simultaneously – and the scientists behind a new study say this makes evolving resistance 100 million times more difficult.

Advertisement

Antimicrobial resistance in bacteria, parasites, fungi, and viruses is an ever-increasing threat to human health. The World Health Organization estimates it was directly responsible for 1.27 million global deaths in 2019, and the problem is growing.

When it comes to bacteria, the rise of resistant “superbugs” that can evade many or all of our existing antibiotics threaten to return us to an era when even a minor infection could be deadly. To try and get us off this path, scientists are racing to develop new and improved antibiotics, helped by modern technology – and even turning to some much more old-school methods to try and stop the problem from getting worse.



What we really need, though, is a drug that bacteria can’t evolve resistance to. Otherwise, we’ll forever be stuck in this arms race. A new study from the University of Illinois Chicago and the Beijing Institute of Technology reports on a class of drugs called macrolones, which might offer the solution we’ve been looking for.

“The beauty of this antibiotic is that it kills through two different targets in bacteria,” explained senior author Alexander Mankin in a statement. “If the antibiotic hits both targets at the same concentration, then the bacteria lose their ability to become resistant via acquisition of random mutations in any of the two targets.”

Advertisement

Macrolones are synthetic compounds that bring together two widely used antibiotics that each target bacterial cells from different angles.

The first are macrolides like erythromycin, commonly prescribed to treat conditions such as chest infections and some sexually transmitted infections, which prevent bacteria from efficiently manufacturing the proteins they need to function by blocking the ribosome. The second are fluoroquinolones like ciprofloxacin, a broad-spectrum antibiotic that’s often used when other drugs have failed. These target a bacterial enzyme called DNA gyrase, thereby stopping the DNA from achieving the correct structure.

The team synthesized a suite of different macrolones and investigated their effects on bacteria. While some targeted either the ribosome or DNA gyrase preferentially, there was one candidate that stood out from the pack – at its lowest effective dose, it targeted both cellular processes equally.

Three scientists, Yury Polikanov, Nora Vázquez-Laslop and Alexander Mankin, who collaborated on this study, standing in front of a shelf in the lab containing bottles of reagents; Vázquez-Laslop, standing in the middle, is holding a 3D model of the structure of the antibiotic

University of Illinois Chicago investigators Yury Polikanov, Nora Vázquez-Laslop, and Alexander Mankin, who collaborated on this study, holding a model of a macrolone antibiotic.

Image credit: Dmitrii Travin

“By basically hitting two targets at the same concentration, the advantage is that you make it almost impossible for the bacteria to easily come up with a simple genetic defense,” said Yury Polikanov, an associate professor who heads up one of the labs that conducted the work.

Advertisement

Some of the macrolones could even continue to target the ribosome when the bacteria had evolved a resistance mutation that usually prevents traditional macrolides from working.

Further development of these very promising compounds could provide us with some of the best hope we have for drugs that can counter the “antibiotic apocalypse” before it’s too late.

“The main outcome from all of this work is the understanding of how we need to go forward,” Mankin said. “And the understanding that we’re giving to chemists is that you need to optimize these macrolones to hit both targets.”

The study is published in the journal Nature Chemical Biology.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Canada’s Conservatives pledge big spending, deficit reduction in election platform
  2. Evolito’s electric motors look set to take off in aerospace where YASA left off in automotive
  3. TWIS: Newly Discovered CRISPR-Like Systems May Be Used To Edit Human Genomes, Reconstructed Face Of 50,000-Year-Old Ancient Ancestor, And Much More This Week
  4. Can Peacocks Fly?

Source Link: Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proof

Filed Under: News

Primary Sidebar

  • How Many Senses Do Humans Have? It Could Be As Many As 33
  • 6 Astronomical Events To Look Forward To If You Live Long Enough
  • Atmospheric Rivers Have Shifted Toward Earth’s Poles Over The Past 40 Years, Bringing Big Weather Changes
  • Is It Time To Introduce “Category 6” Hurricanes?
  • At The Peak Of The Ice Age, Humans Built Survival Shelters Out Of Mammoth Bones
  • The World’s Longest Continuously Erupting Volcano Has Been Spewing Lava For At Least 2,000 Years
  • Rare Flat-Headed Cat Rediscovered In Thailand Following First Confirmed Sighting In Almost 30 Years
  • Don’t Pour Oil Down The Drain, There’s A Very Clever Way To Get Rid Of It
  • People Around The World Are Drinking Less Alcohol
  • Is It Better To Have One Long Walk Or Many Short Ones?
  • Where Is The World’s Largest Christmas Tree?
  • In A Monumental Scientific Effort, The Human Genome Has Been Mapped Across Time And Space In Four Dimensions
  • Can This Electronic Nose “Smell” Indoor Mould?
  • Why Does The Earth’s Closest Approach To The Sun Take Place During Winter?
  • 2025 Was The Year Humanity Got Closer Than Ever To Finding Alien Life
  • Kilauea Has Officially Been Erupting For A Year – You Can Watch Its Latest Spectacular Lava Fountains Live
  • Meet The Ladybird Spider, A “Red-Colored Oddball” With Features Never Seen Before
  • Breakthrough Listen Searched Interstellar Object 3I/ATLAS For Technosignatures During Its Closest Approach To Earth
  • “Miracle” Rhinoceros Calf’s Chonky Weight Gain Offers Hope For Species
  • Would You Swap Your Festive Feast For Something Plant-Based Or Lab-Grown?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version