• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proof

July 24, 2024 by Deborah Bloomfield

A new class of antibiotics is offering real hope of a response to the problem of antimicrobial resistance, hitting bacteria with a dual-pronged assault that’s almost impossible to combat. Called macrolones, the drugs target two bacterial processes simultaneously – and the scientists behind a new study say this makes evolving resistance 100 million times more difficult.

Advertisement

Antimicrobial resistance in bacteria, parasites, fungi, and viruses is an ever-increasing threat to human health. The World Health Organization estimates it was directly responsible for 1.27 million global deaths in 2019, and the problem is growing.

When it comes to bacteria, the rise of resistant “superbugs” that can evade many or all of our existing antibiotics threaten to return us to an era when even a minor infection could be deadly. To try and get us off this path, scientists are racing to develop new and improved antibiotics, helped by modern technology – and even turning to some much more old-school methods to try and stop the problem from getting worse.



What we really need, though, is a drug that bacteria can’t evolve resistance to. Otherwise, we’ll forever be stuck in this arms race. A new study from the University of Illinois Chicago and the Beijing Institute of Technology reports on a class of drugs called macrolones, which might offer the solution we’ve been looking for.

“The beauty of this antibiotic is that it kills through two different targets in bacteria,” explained senior author Alexander Mankin in a statement. “If the antibiotic hits both targets at the same concentration, then the bacteria lose their ability to become resistant via acquisition of random mutations in any of the two targets.”

Advertisement

Macrolones are synthetic compounds that bring together two widely used antibiotics that each target bacterial cells from different angles.

The first are macrolides like erythromycin, commonly prescribed to treat conditions such as chest infections and some sexually transmitted infections, which prevent bacteria from efficiently manufacturing the proteins they need to function by blocking the ribosome. The second are fluoroquinolones like ciprofloxacin, a broad-spectrum antibiotic that’s often used when other drugs have failed. These target a bacterial enzyme called DNA gyrase, thereby stopping the DNA from achieving the correct structure.

The team synthesized a suite of different macrolones and investigated their effects on bacteria. While some targeted either the ribosome or DNA gyrase preferentially, there was one candidate that stood out from the pack – at its lowest effective dose, it targeted both cellular processes equally.

Three scientists, Yury Polikanov, Nora Vázquez-Laslop and Alexander Mankin, who collaborated on this study, standing in front of a shelf in the lab containing bottles of reagents; Vázquez-Laslop, standing in the middle, is holding a 3D model of the structure of the antibiotic

University of Illinois Chicago investigators Yury Polikanov, Nora Vázquez-Laslop, and Alexander Mankin, who collaborated on this study, holding a model of a macrolone antibiotic.

Image credit: Dmitrii Travin

“By basically hitting two targets at the same concentration, the advantage is that you make it almost impossible for the bacteria to easily come up with a simple genetic defense,” said Yury Polikanov, an associate professor who heads up one of the labs that conducted the work.

Advertisement

Some of the macrolones could even continue to target the ribosome when the bacteria had evolved a resistance mutation that usually prevents traditional macrolides from working.

Further development of these very promising compounds could provide us with some of the best hope we have for drugs that can counter the “antibiotic apocalypse” before it’s too late.

“The main outcome from all of this work is the understanding of how we need to go forward,” Mankin said. “And the understanding that we’re giving to chemists is that you need to optimize these macrolones to hit both targets.”

The study is published in the journal Nature Chemical Biology.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Canada’s Conservatives pledge big spending, deficit reduction in election platform
  2. Evolito’s electric motors look set to take off in aerospace where YASA left off in automotive
  3. TWIS: Newly Discovered CRISPR-Like Systems May Be Used To Edit Human Genomes, Reconstructed Face Of 50,000-Year-Old Ancient Ancestor, And Much More This Week
  4. Can Peacocks Fly?

Source Link: Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proof

Filed Under: News

Primary Sidebar

  • Bizarre Creature With “All-Body Brain” Challenges What We Know About Evolution of Nervous Systems
  • For First Time, Astronomers Record A Coronal Mass Ejection From A Star That’s Not Our Sun
  • In 2032, Earth May Be Treated To A Meteor Shower Like No Other, Courtesy Of “City-Killer” Asteroid 2024 YR4
  • “A Wave Of Poo”: People Reversed The Direction Of The Chicago River’s Flow In 1900
  • Watch Out For Aurorae Tonight – The Strongest Solar Flare Of 2025 So Far Just Erupted From The Sun
  • First Radio Detection Received From Interstellar Object 3I/ATLAS. What Does That Mean?
  • “Drop Crocs”: Australia Once Had Ancient Crocs That Climbed Trees To Jump On Their Prey
  • How We Know Interstellar Object 3I/ATLAS Is Not An Alien Mothership
  • First-Of-Its-Kind Evidence Shows Bees Can Learn “Morse Code” – Well, Kinda
  • Humans Have A “Seventh Sense” That Lets You Touch Things From A Distance
  • The Longest Place Name Has 111 Letters – And It’s Visited By Millions Of People Each Year
  • We Now Know Why Neanderthal Faces Looked So Different To Our Own
  • Why Does Africa Have So Many Of The World’s Largest Land Animals?
  • This “Ant-Mimicking” Spider Produces Its Own Kind Of Milk And Nurses Its Babies
  • 1972 Was The Longest Year In Modern History – Here’s Why
  • Why Did “Magic Mushrooms” Evolve To Be Hallucinogenic – What’s In It For The Mushrooms?
  • Why Can’t You Domesticate All Wild Animals? The Process Relies On 6 Characteristics Few Mammals Possess
  • Meet Some Of Earth’s Mightiest Predators
  • Canada Officially Loses Its Measles Elimination Status After Nearly 30 Years. The US Is Not Far Behind
  • Two “Anomalies” Detected In Egypt’s Menkaure Pyramid Using Electrical Resistance Tomography
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version