• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Can Insects Drown – And How Do They Breathe Anyway?

August 28, 2024 by Deborah Bloomfield

If you’ve ever witnessed a spider climb out of your bathtub drain or chucked a particularly creepy crawly down the toilet in a moment of panic, you may have wondered if insects are capable of surviving these watery ordeals.

Advertisement

The answer is that – thankfully for some, unfortunately for others – many insects are pretty great at staying alive even after long periods completely submerged. While all insects are different, and some are better at withstanding submersion than others, species like bumblebees have been observed proverbially holding their breath for up to a week!

A study published in April 2024, which was inspired by an experimental oversight that almost drowned a bumblebee queen population, found that 81 percent of the common eastern bumble bee (Bombus impatiens) sample were able to survive unscathed after being entirely submerged in water for seven full days.

While the study has its ethical criticisms, what was being replicated happens naturally to these insects, which is why they’ve adapted to withstand it so well. Bumblebee species typically nest in the ground in earthy burrows that are especially susceptible to flooding.

The queen honeybee’s special adaptation means she can remain in her burrow to overwinter even when the risk of heavy rainfall is high. This remarkable ability has been observed in a number of species that inhabit areas that experience seasonal flooding, as well as being an adaptational advantage for any burrowing species that has to withstand low oxygen levels while underground.

A 2006 paper observing the migration behaviors of insects in European river floodplains found that 70 percent of plant and leafhopper species overwintered in the floodplain and withstood submersion. However, the majority of spiders and ground beetles in the area chose to migrate away from the floodplains, as did the larval forms of many species, indicating their submersion abilities are less robust.

Advertisement

So, what makes these insects so skilled at withstanding submersion and staying put in low-oxygen burrows? It all comes down to how insects breathe.

How do insects breathe?

Mammals, birds, and reptiles all respire through a combined respiratory and circulatory system, whereby oxygen is inhaled into the lungs and moves into the blood, which then delivers the oxygen to the tissues and muscles throughout the body.

Insects, on the other hand, don’t have any lungs; in fact, their respiratory and circulatory systems are entirely separate. Instead of inhaling oxygen through the mouth or nostrils, insects breathe through openings called spiracles found in the thorax and abdomen. A network of tracheae throughout the insect’s body then transports and exchanges oxygen and carbon dioxide. 

However, similarly to humans, more active insects, like those able to fly, need to breathe in more oxygen than species that live more sedentary lives. They also, like humans, release carbon dioxide as a waste product.

Advertisement

These respiratory differences make insects highly efficient at using the oxygen they take in. In proportion to their bodies, insects can breathe in far more oxygen than humans, and can also perform discontinuous gas exchange by opening and closing their spiracles.

Discontinuous gas exchange is a cycle of opening, closing, and “fluttering” spiracle phases that allows insects to essentially recycle the oxygen in the tracheae, effectively eliminating the need to take in fresh oxygen for extended periods of time. 

This is the key mechanism behind their ability to survive in low-oxygen environments and to emerge unscathed after being completely submerged in water.

While this peculiar respiratory mechanism has its advantages, it’s also thought the be one of the reasons insects’ size is dependent on the availability of oxygen in the environment. The bigger the insect, the longer the internal tracheae, so larger insects need a more oxygen-rich environment to be able to take in enough of it to reach the very end of the blind-ended tracheae.

Advertisement

So, will a spider survive an impromptu journey around the U-bend? Maybe, but probably best to gently place it outside instead.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Lithuania to fence first 110 km of Belarus border by April
  2. China’s ICBC to restrict some forex and commodities trading
  3. Why Is Earth’s Inner Core Solid When It’s Hotter Than The Sun’s Surface?
  4. Dark Energy May Be Getting Diluted As The Universe Expands

Source Link: Can Insects Drown – And How Do They Breathe Anyway?

Filed Under: News

Primary Sidebar

  • Meet Ned: The Lonely Lefty Snail Looking For Love
  • “America Will Lead The Next Giant Leap”: NASA Announces New Milestone In Hunt For Exoplanets
  • What Did Neanderthals Sound Like?
  • One Star System Could Soon Dazzle Us Twice With Nova And Supernova Explosions
  • Unethical Experiments: When Scientists Really Should Have Stopped What They Were Doing Immediately
  • The First Humans Were Hunted By Leopards And Weren’t The Apex Predators We Thought They Were
  • Earth’s Passage Through The Galaxy Might Be Written In Its Rocks
  • What Is An Einstein Cross – And Why Is The Latest One Such A Unique Find?
  • If We Found Life On Mars, What Would That Mean For The Fermi Paradox And The Great Filter?
  • The Longest Living Mammals Are Giants That Live Up To 200 Years In The Icy Arctic
  • Entirely New Virus Detected In Bat Urine, And It’s Only The 4th Of Its Kind Ever Isolated
  • The First Ever Full Asteroid History: From Its Doomed Discovery To Collecting Its Meteorites
  • World’s Oldest Pachycephalosaur Fossil Pushes Back These Dinosaurs’ Emergence By 15 Million Years
  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version