• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Can Insects Drown – And How Do They Breathe Anyway?

August 28, 2024 by Deborah Bloomfield

If you’ve ever witnessed a spider climb out of your bathtub drain or chucked a particularly creepy crawly down the toilet in a moment of panic, you may have wondered if insects are capable of surviving these watery ordeals.

Advertisement

The answer is that – thankfully for some, unfortunately for others – many insects are pretty great at staying alive even after long periods completely submerged. While all insects are different, and some are better at withstanding submersion than others, species like bumblebees have been observed proverbially holding their breath for up to a week!

A study published in April 2024, which was inspired by an experimental oversight that almost drowned a bumblebee queen population, found that 81 percent of the common eastern bumble bee (Bombus impatiens) sample were able to survive unscathed after being entirely submerged in water for seven full days.

While the study has its ethical criticisms, what was being replicated happens naturally to these insects, which is why they’ve adapted to withstand it so well. Bumblebee species typically nest in the ground in earthy burrows that are especially susceptible to flooding.

The queen honeybee’s special adaptation means she can remain in her burrow to overwinter even when the risk of heavy rainfall is high. This remarkable ability has been observed in a number of species that inhabit areas that experience seasonal flooding, as well as being an adaptational advantage for any burrowing species that has to withstand low oxygen levels while underground.

A 2006 paper observing the migration behaviors of insects in European river floodplains found that 70 percent of plant and leafhopper species overwintered in the floodplain and withstood submersion. However, the majority of spiders and ground beetles in the area chose to migrate away from the floodplains, as did the larval forms of many species, indicating their submersion abilities are less robust.

Advertisement

So, what makes these insects so skilled at withstanding submersion and staying put in low-oxygen burrows? It all comes down to how insects breathe.

How do insects breathe?

Mammals, birds, and reptiles all respire through a combined respiratory and circulatory system, whereby oxygen is inhaled into the lungs and moves into the blood, which then delivers the oxygen to the tissues and muscles throughout the body.

Insects, on the other hand, don’t have any lungs; in fact, their respiratory and circulatory systems are entirely separate. Instead of inhaling oxygen through the mouth or nostrils, insects breathe through openings called spiracles found in the thorax and abdomen. A network of tracheae throughout the insect’s body then transports and exchanges oxygen and carbon dioxide. 

However, similarly to humans, more active insects, like those able to fly, need to breathe in more oxygen than species that live more sedentary lives. They also, like humans, release carbon dioxide as a waste product.

Advertisement

These respiratory differences make insects highly efficient at using the oxygen they take in. In proportion to their bodies, insects can breathe in far more oxygen than humans, and can also perform discontinuous gas exchange by opening and closing their spiracles.

Discontinuous gas exchange is a cycle of opening, closing, and “fluttering” spiracle phases that allows insects to essentially recycle the oxygen in the tracheae, effectively eliminating the need to take in fresh oxygen for extended periods of time. 

This is the key mechanism behind their ability to survive in low-oxygen environments and to emerge unscathed after being completely submerged in water.

While this peculiar respiratory mechanism has its advantages, it’s also thought the be one of the reasons insects’ size is dependent on the availability of oxygen in the environment. The bigger the insect, the longer the internal tracheae, so larger insects need a more oxygen-rich environment to be able to take in enough of it to reach the very end of the blind-ended tracheae.

Advertisement

So, will a spider survive an impromptu journey around the U-bend? Maybe, but probably best to gently place it outside instead.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Lithuania to fence first 110 km of Belarus border by April
  2. China’s ICBC to restrict some forex and commodities trading
  3. Why Is Earth’s Inner Core Solid When It’s Hotter Than The Sun’s Surface?
  4. Dark Energy May Be Getting Diluted As The Universe Expands

Source Link: Can Insects Drown – And How Do They Breathe Anyway?

Filed Under: News

Primary Sidebar

  • Kissing Has Survived The Path Of Evolution For 21 Million Years – Apes And Human Ancestors Were All At It
  • NASA To Share Its New Comet 3I/ATLAS Images In Livestream This Week – Here’s How To Watch
  • Did People Have Bigger Foreheads In The Past? The Grisly Truth Behind Those Old Paintings
  • After Three Years Of Searching, NASA Realized It Recorded Over The Apollo 11 Moon Landing Footage
  • Professor Of Astronomy Explains Why You Can’t Fire Your Enemies Straight Into The Sun
  • Do We All See The Same Blue? Brilliant Quiz Shows The Subjective Nature Of Color Perception
  • Earliest Detailed Observations Of A Star Exploding Show True Shape Of A Supernova
  • Balloon-Mounted Telescope Captures Most Precise Observations Of First Known Black Hole Yet
  • “Dawn Of A New Era”: A US Nuclear Company Becomes First Ever Startup To Achieve Cold Criticality
  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • This 12,000-Year-Old Artwork Shows An “Extraordinary” Moment In History And Human Creativity
  • World’s First Critically Endangered Penguin Directly Competes With Fishing Boats For Food
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version