• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Can’t Handle The Heat? A Potential “Anti-Spice” Could Tame Spicy Food

May 23, 2025 by Deborah Bloomfield

If you love spicy food but are sometimes outdone by the hot punch to your mouth, then there may be good news coming your way. Researchers have identified molecules that suppress the heat from chili peppers, which may become a new “anti-spice” capable of lowering the heat.

A chili pepper’s spiciness is known as its “pungency”; basically, its ability to produce the familiar burning sensation that comes when you eat them. The sensation is a form of chemesthetic perception, which is the sensitivity of our skin or mucus membranes to chemicals, especially those that trigger temperature, tactile, or pain sensations.

The heat of chili peppers has been attributed to two members of a class of compounds called capsaicinoids: capsaicin and dihydrocapsaicin. Traditionally, their overall pungency has been calculated based on each pepper’s concentration of these two compounds, based on what are known as Scoville Heat Units (SHU), a standard unit of measurement for spiciness that was developed over a century ago.

However, the new research from Ohio State University has identified three compounds in a range of pepper samples that actually lower heat intensity, which undermines the effectiveness of SHU as a measurement system.

The results have several potential applications, including customizing chili pepper breeding, offering alternative pain relief options to capsaicin, and even potentially a new condiment for cooking.

“If you’re at home and you’ve ordered cuisine that has spice to it that’s a little too hot for some tastes, you can just sprinkle on a form of chili pepper that has got these suppressant agents in them that will dial it down,” Devin Peterson, professor of food science and technology at The Ohio State University, explained in a statement.

“I think the idea of using a natural material as an anti-spice, especially for somebody with kids, would have value as a household ingredient.”

In their work, Peterson and colleagues took 10 cultivars of chili peppers and determined their Scoville units based on their capsaicinoid content. They then normalized the samples by preparing them in dried powder form, each with the same number of Scoville units. The team then added the standardized powders to tomato juice and gave them to a panel of trained testers to judge their pungency.

“They’re all in the same base and all normalized, so they should have had a similar heat perception, but they didn’t,” Peterson added. “That is a pretty clear indication that other things were at play and impacting the perception.”

In order to identify what was going on, the team created statistical models and examined molecular structures in existing libraries of chemicals. This allowed them to identify five potential compounds that may be responsible for lowering the pepper’s perceived punch.

With this information in hand, a second group of trained testers was employed to compare the pungency of a range of capsaicinoid samples that had varying levels of these candidate compounds. In these tests, different samples of the compounds were placed on each side of the tongue simultaneously.

In addition to the taste-testers, the team also examined the samples using high-resolution mass spectrometry and nuclear magnetic resonance (NMR) experiments. This latter method uses magnetic fields and radio waves to study properties of atomic nuclei, which offers valuable information about the molecular structure, behavior, and chemical environment of a sample. This allowed the team to narrow down the heat-supressing compounds to three candidates: capsianoside I, roseoside, and gingerglycolipid A. 

These results describe a mechanism that affects chili pepper heat levels, but they are not exclusive to any specific chili pepper varieties.

The results could have implications for helping to make foods taste better for different people without the need of adding sugar, salt, or fats.

“What is maybe underappreciated from a science perspective is how important food flavor is to your dietary patterns and your enjoyment in life,” Peterson said. “So part of what we focus on is, how do we make healthy eating less difficult?”

But while the identification of these three compounds make help with culinary efforts in the future, there is also a pain management angle that comes from it.

The TRPV1 receptors in our oral cavity are responsible for perceiving chili pepper pungency. They are triggered by molecules like capsaicin, which causes the painful heat sensation. These receptors are present throughout our bodies, meaning that capsaicin in supplements and topical treatments can be used to alleviate pain. This works by initially exposing the receptors to the irritant which eventually desensitizes them to the stimulus so pain goes away.

Although it is too early to say for sure, the newly identified heat-suppressing compounds may offer the same desensitizing benefits, but without the initial irritation.

The study is published in the Journal of Agricultural and Food Chemistry.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Unexplained And Deadly Heat Wave Hotspots Are Showing Up Across The Planet

Source Link: Can’t Handle The Heat? A Potential “Anti-Spice” Could Tame Spicy Food

Filed Under: News

Primary Sidebar

  • Thought Horns Were Just For Cows? This Striking Triple-Horned Chameleon Proves Otherwise
  • Elon Musk’s Starship Doesn’t Even Have To Fly To Explode Now
  • How Do We Know The Bible’s Forbidden Fruit Was An Apple?
  • Your Genetic Ancestry Is Probably Not What You Think It Is
  • Researchers Use Bubbles To Encode And Store Messages In Ice, And Read Them Back From Photographs
  • Analemmas And The Equation Of Time: Why The Path Of The Sun Traces Out An 8 On Earth
  • Positive Nihilism: Is Meaninglessness The Key To Happiness?
  • Feast Your Eyes On The Most Detailed 1,000-Color Image Of A Nearby Galaxy
  • Engineering YouTuber Weighs An Airbus A320 Plane Whilst It Is Still Flying
  • Australian Moth Is First-Known Invertebrate To Navigate By Stars On Epic 1,000-Kilometer Migration
  • Losing Two Legs Doesn’t Slow Tarantulas Down Or Make Them More Unstable
  • Who Dislikes The Other More, Democrats Or Republicans? This Study Found Out
  • Thar Desert: A Biodiversity Hotspot That’s Also The Most Densely Populated Desert In The World
  • Oldest Footprints In North America Really Are Over 20,000 Years Old, New Analysis Confirms
  • Why Homo Sapiens Failed To Migrate Out Of Africa Until 60,000 Years Ago
  • An Unexpected Organ May Help Sharks Fight Disease
  • The World’s Largest Sand Battery Was Just Switched On In Finland
  • First-Known Species Of “Methane-Powered” Sea Spiders Have Been Discovered In The Deep Sea
  • In 2010, The US Made Guns Easier To Get. The Result? Thousands Of Dead Kids
  • The 13th Century “Codex Gigas” Or “The Devil’s Bible” Is The Subject Of An Unsettling Legend
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version