• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Carbix spins emissions into gold — or at least useful minerals

September 22, 2021 by David Barret Leave a Comment

Pollutants pouring from smokestacks around the world may be bad news for the atmosphere, but if you catch them before they get out there, you could reduce emissions and collect some valuable materials at the same time. That’s what Carbix aims to do with its carbon-sequestering reactor, which would extract minerals from emissions while staying carbon-negative.

Carbix, which presented today at the Disrupt Startup Battlefield, is capitalizing on the pressure being placed on industries to decarbonize or face fines and high taxes. Cement manufacturing alone accounts for some 8 percent of carbon emissions, and executives are scrambling to go green.

It turns out that minerals needed for cement and many other industries are being literally thrown away — puffed out of flues and allowed to settle wherever they drift. In fact, these minerals are valuable enough that Carbix can afford to pay factories for the privilege of siphoning them off and reselling them.

“We’re essentially paying emitters for stock they would normally dump into the wind — they have no incentive not to do this,” said Carbix founder Quincy Sammy.

The process is an accelerated version of what happens in nature: atmospheric carbon dioxide interacting with certain abundant minerals and slowly forming other ones — like calcium carbonate, limestone. Turning CO2 into stone is the basis of several startups in what we might call the permanent carbon sequestering market; Heimdal does it using seawater and 44.01 is injecting high-carbon water into fields of reactive minerals. Carbix, of course, is going to artificial sources.

It works like this: Carbix goes to a big emitter of CO2 and particulates and analyzes the stream being blown out. From that they can predict what carbonate minerals they can isolate and what they’ll need to do it. Then the output of the facility will be routed through one of Carbix’s reactors, in which the various effluvia are combined with raw reactive minerals — gypsum, lime kiln dust, and others sourced from nearby to lower the logistics impact — and out come useful substances like ingredients for making cement, glass, and other things. They cart those off and sell the raw materials that would have otherwise disappeared into the atmosphere (and eventually landed on a glacier somewhere).

The reactor, currently in a scale prototype called X1, is the most obviously defensible IP here, and Sammy said that the bulk of the seed round they’re putting together will go towards building the production-scale X2, which will have several hundred times the reactor space. Each X2 should be able to handle about 16,000 tons of carbonates per year per reactor, which corresponds to about 8,000 tons of CO2. They can operate in parallel, and Sammy estimated that a good size emitter might use 10 at a single facility.

Prototype of the X1 reactor. The X2 will be larger by an order of magnitude at least.

Prototype of the X1 reactor. The X2 will be larger by an order of magnitude at least.

The simplest arrangement would be for the emitter to pay for the upfront costs of the installation, with the understanding of mutual benefits to come. Carbix would then regularly pay for the materials it extracts — a double benefit since the emitter would normally not earn any money on them but the emissions would count towards caps. Sammy didn’t rule out profit sharing or other agreements but this would be the preferred setup.

“We’re breaking new ground with these companies, so reciprocity is key,” Sammy said. And while cement manufacturing is the first vertical they’re targeting, the Carbix process can be adapted to plenty of other industries.

“We don’t want to be tied to any specific sector — flue gas is flue gas. That’s why the project is end-to-end; we guide people through it. We’re demonstrating that we can work in any industry,” he explained.

As with any hardware company working at industrial scales, there are a lot of upfront costs. Carbix is working on a seed round to cover the expense of building and certifying the X2 reactor so it can be insured and financed through ordinary channels. After that comes the reciprocal back-scratching arrangements that benefit everyone involved.

 

Source Link Carbix spins emissions into gold — or at least useful minerals

David Barret
David Barret

Related posts:

  1. G20 urges COVID help for poor states, but short on new commitments
  2. China’s Aug export growth unexpectedly picks up speed, imports solidly up
  3. Vietnam approves Cuba’s Abdala vaccine for use against COVID-19
  4. Bolivian president calls for global debt relief for poor countries

Filed Under: News

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Color Vs. Flight: Are Darker Birds’ Feathers Weighing Them Down?
  • 9,000-Year-Old Dog Poop Reveals Siberian Sled Dogs Ate Polar Bears
  • Watch The Highest Resolution View Of A Solar Flare Down To An Incredible 21 Kilometers
  • Jupiter’s Mysterious Core: Science’s Best Explanation For How It Formed Doesn’t Work After All
  • The Largest Ancient Whale Graveyard In The World Is In The Middle Of… A Desert?
  • Some Languages Don’t Clearly Express A Sense Of The Future, And It Skews The Way We See Reality
  • Rare White Kiwi Seen Scampering Back To Its Burrow In Broad Daylight In New Zealand
  • What Is Osmotic Power? Japan’s New Renewable Energy Plant Goes Live
  • The “Wow!” Signal Was Likely From An Extraterrestrial Source, And More Powerful Than We Thought
  • The Greatest Prank Ever Pulled In Space Really Fooled NASA’s Mission Control
  • Why Does Seafood Glow In The Dark? This Curious Phenomenon Has A Teeny Tiny Explanation
  • In 1973, A Handful Of People Witnessed A Whopping 74-Minute Total Eclipse
  • Does Putting A Metal Spoon In Champagne Really Keep It Fizzy?
  • Why Scientists Are Going Over A Kilometer Underground In The Search For Alien Life
  • The Deadliest Animal In The US Isn’t What You’d Expect
  • Humpback Whale Flippers Let Them Move “Like Underwater Fighter Pilots” To Make Unique Bubble Nets
  • The Only Place On Earth Where You (Yes, You) Can Search For Diamonds – And Keep What You Find
  • Bizarre Gravitational Collisions Reveal Hints Of First Black Hole Throuple
  • Newly Discovered Dinosaur’s “Sail-Like” Structure Along Its Back May Have Attracted Mates
  • What Are Lagrange Points, And Why Are They Important?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version