• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Caterpillar-Like Bacteria Can Cling To Your Mouth Thanks To Clever Evolution Trick

August 23, 2022 by Deborah Bloomfield

The human mouth is teeming with many different organisms, over 700 species in fact. Some are beneficial, while others may be associated with conditions such as migraines. The human body is a great host, as we are warm and moist, however, the mouth is a harsh landscape to live in. It can be difficult for organisms to attach to the surface as the oral cavity is always shedding and the saliva is always flowing.

Advertisement

Now, researchers have identified some little critters that may be able to hang on a bit better – snazzy caterpillar-like bacteria from the family Neisseriaceae, specifically of the genera Alysiella, Simonsiella, and Conchiformibius. The results are published in Nature Communications.

Rod-shaped bacteria tend to split transversally (horizontally) before detaching from each other. However, some Neisseriaceae split longitudinally (along the long axis) and then hang on for dear life by their tips. In these longitudinally-split bacteria, once the division is complete, they tend to remain attached and form caterpillar-like filaments. In fact, some of these cells can adopt different shapes, which may help the bacteria to survive nutritional stress.

In the study, the team used an electron microscope to delve into the bacterial cell shape across the family Neisseriaceae. They investigated the standard bacteria shapes (rod and coccus), along with the caterpillar-like filaments. The evolutionary history of these shapes was also examined through genome investigations, and the genes responsible for the unusual division were identified.

The team also used fluorescence labeling technology to look into the cell growth progression in multicellular bacteria and compared this with the genetic make-up of the more classically shaped rod species. The researchers also tried to introduce the genetic changes into the rod-shaped Neisseriaceae, to recreate the evolutionary history. This was unsuccessful and the rod-shaped bacteria could not become multicellular, although the team was able create longer and thinner cells.  

Advertisement

“We speculate that in the course of evolution, through a reworking of the elongation and division processes, the cell shape changed, perhaps to better thrive in the oral cavity,” study author Frédéric Veyrier said in a statement.

“Apart from helping us to understand how cell shape evolved, multicellular Neisseriaceae may be useful to study how bacteria learned to live attached to the surface of animals, the only place they have been found to occur so far. Half of us is carrying them in our mouths, by the way”, explained Silvia Bulgheresi of the University of Vienna.  

Philipp Weber, who also worked on the study, emphasized that “expanding the cell biology field to additional morphologies and symbiotic species is also crucial to increase the pool of protein targets (e.g., antibiotic targets) for biopharmaceutical applications.”

Advertisement

“An evolutionary approach, such as that undertaken here for the Neisseriaceae, can shed light on new, unforeseen protein targets,” Sammy Nyongesa, first author of the study, added.

Overall, the members of the Neisseriaceae family may be good model organisms for division studies and could help pinpoint new antimicrobial targets.  

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis – Raducanu’s toughest challenge is coping with the fame game
  2. AT&T anticipates pending WarnerMedia-Discovery deal to close by mid-2022
  3. UK marketing-led group takes antitrust complaint against Google’s Privacy Sandbox to the EU
  4. Motor racing-Verstappen demands more pace after retaking F1 championship lead

Source Link: Caterpillar-Like Bacteria Can Cling To Your Mouth Thanks To Clever Evolution Trick

Filed Under: News

Primary Sidebar

  • Have You Seen This Snake? Florida Wants Your Help Finding Rare Species Seen Once In 50 Years
  • Plague Confirmed In Lake Tahoe Area For First Time In 5 Years, California Officials Say
  • Supergiant Star Spotted Blowing Milky Way’s Largest Bubble Of Its Kind, Surprising Astronomers
  • Game Theory Promised To Explain Human Decisions. Did It?
  • Genes, Hormones, And Hairstyling – Here Are Some Causes Of Hair Loss You Might Not Have Heard Of
  • Answer To 30-Year-Old Mystery Code Embedded In The Kryptos CIA Sculpture To Be Sold At Auction
  • Merry Mice: Human Brain Cells Transplanted Into Mice Reduce Anxiety And Depression
  • Asteroid-Bound NASA Mission Snaps Earth-Moon Portrait From 290 Million Kilometers Away
  • Forget State Mammals – Some States Have Official Dinosaurs, And They’re Awesome
  • Female Jumping Spiders Of Two Species Prefer The Sexy Red Males Of One, Leading To Hybridization
  • Why Is It So Difficult To Find New Moons In The Solar System?
  • New “Oxygen-Breathing” Crystal Could Recharge Fuel Cells And More
  • Some Gut Bacteria Cause Insomnia While Others Protect Against It, 400,000-Person Study Argues
  • Neanderthals And Homo Sapiens Got It On 100,000 Years Earlier Than We Thought
  • “Womb Of The Universe”: Native American Tribal Elders Help Archaeologists Decipher Ancient Rock Art In Missouri Cave
  • 16,000-Year-Old Paintings Suggest Prehistoric Humans Risked Their Lives To Enter “Shaman Training Cave”
  • Final Gasps Of A Dying Star Seen Through A Record-Breaking 130 Years Of Data
  • COVID-19 “Vaccine Alternative” Injection Could Be On Fast-Track To Approval From FDA
  • New Jersey Officials Investigate Possible First Locally Acquired Malaria Case Since 1991
  • First-of-Its-Kind Bright Orange Nurse Shark Recorded Off Costa Rica Makes History
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version