• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Caves In The US That Glow Under UV Light Could Help Us Find Life On Ice Worlds

March 25, 2025 by Deborah Bloomfield

Wind Cave, South Dakota, has interesting minerals, but is ill-suited for life, being too far underground for sunlight to reach. Yet its glowing colors revealed by black light could assist the search for life on other worlds, cave researchers have argued.

ADVERTISEMENT

Professor Joshua Sebree of the University of Northern Iowa led a team of students into Wind Cave and others like it to study the way water seeping through rocks above has influenced the mineral composition.

“The purpose of this project as a whole is to try to better understand the chemistry taking place underground that’s telling us about how life can be supported,” Sebree explained in a statement. 

The team initially explored using torches operating at visual wavelengths but also brought black lights, whose UV radiation can stimulate fluorescence at wavelengths we can see.

“The walls just looked completely blank and devoid of anything interesting,” Sebree said. “But then, when we turned on the black lights, what used to be just a plain brown wall turned into a bright layer of fluorescent mineral that indicated where a pool of water used to be 10,000 or 20,000 years ago.”

Comparison of part of Wind Cave under normal optical light and ultraviolet.

Comparison of part of Wind Cave under normal optical light and ultraviolet.

Image Credit: Joshua Sebree

The cave’s most interesting minerals are often hidden under layers of dust, but the UV-stimulated glow shines through.

Manganese-rich waters in Wind Cave have produced zebra calcites, striped in ordinary light but glowing distinctively pink under black light.

Black and whtie stripes of calcite glow pink when exposed to black light.

Black and white stripes of calcite glow pink when exposed to black light.

Image Credit: Joshua Sebree

Colors like this allow the team to identify the chemistry of the cave without needing to damage it by collecting samples for analysis. Astronomers use the spectra from stars shining through planets’ atmospheres to identify the molecules present since we have no way of sampling directly. The same approach can be used on Earth, where we could collect specimens, but don’t want to because what we’re seeing is so rare and precious.

With abundant light available, Sebree’s team can identify details that would make teams trying to squeeze data from the tiny amounts of light from planets orbiting distant stars weep with envy. Nevertheless, the work is in its infancy, so Sebree has students working on projects such as making an autonomous spectrometer and assessing if the minerals pose any threat to explorers.

The work the team is doing could advance the search for life beyond the Earth in several ways. For example, the autonomous devices the team is developing save them effort, but could be far more important when we reach the point that robots are exploring underground conditions on other planets or moons. By revealing the way water does, and does not, transport vital nutrients, Sebree’s team also hopes to find hints of where to focus efforts in seeking life on other worlds. On Europa or Enceladus, any organic material would need to come up, not down, so allowances will need to be made, but the caves could still be our best point of comparison.

The caves are cold by our standards, presenting some challenges, but to make them a better model for the ice moons of the outer Solar System the team sometimes freezes areas with liquid nitrogen.

ADVERTISEMENT

In the process, Sebree has found what he thinks is evidence that the interactions of calcite and the stronger limestone contribute to cave formation, something he said has never been previously considered.

Sebree and his students are giving two talks and presenting three posters at the Spring Conference of the American Chemical Society on various aspects of the work.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-Manchester test likely to be postponed after India COVID-19 case
  2. EU to attend U.S. trade meeting put in doubt by French anger
  3. Soccer-West Ham win again, Leicester and Napoli falter
  4. Lacking Company, A Dolphin In The Baltic Is Talking To Himself

Source Link: Caves In The US That Glow Under UV Light Could Help Us Find Life On Ice Worlds

Filed Under: News

Primary Sidebar

  • In 1940, A Dog Investigated A Hole In A Tree And Discovered A Vast Cave Filled With Ancient Human Artwork
  • “Time Is Not Broken”: US Officials Work To Correct Time, After Discovering It Is 4.8 Microseconds Out
  • The Evolutionary Reason Why Rage Bait Affects Us – And How To Deal With It This Holiday Season
  • Whales Living To 200 May Actually Be The Norm – There’s A Sad Reason Why We Don’t Know Yet
  • IFLScience The Big Questions: Can Magic Be Used As A Tool In Science?
  • Sheep And… Rhinos? There’s A Very Cute Reason You See Them Hanging Out Together
  • Why Does The Latest Sunrise Of The Year Not Fall On The Winter Solstice?
  • Real Or Fake Christmas Trees: Which Is Better For The Environment?
  • “Cosmic Dipole Anomaly” Suggests That Our Universe May Be “Lopsided”, Seriously Challenging Our Understanding Of The Cosmos
  • Which Animals Mate For Life?
  • Why Is Rainbow Mountain So Vibrantly Colorful?
  • “It’s An Incredible Feeling”: Salty Air Bubbles In 1.4-Billion-Year-Old Crystals Reveal Secrets Of Earth’s Early Atmosphere
  • These Were Some Of The Most Significant Scientific Experiments Of 2025
  • Want To Know What 2026 Has In Store? The Mesopotamians Have A Tip, But You’re Not Going To Like It
  • Can Woolly Bear Caterpillars Predict Winter Weather? No – But They Do Have A Clever Way To Survive The Freeze
  • Is Showering More Hygienic Than Bathing – What Does The Science Say?
  • Why Is Christmas Called Xmas?
  • Stardust Didn’t Reach The Solar System The Way We Thought, So How Did It Get Here?
  • This Might Be The First Time We’ve Ever Seen A Gravitational Wave Event Gravitationally Lensed
  • Carnivorous, Enormous, And Corpse-Scented: What Are The Rarest Plants On Earth?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version