• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Century-Old Challenge Of “Atomic Diffraction” Finally Solved Thanks To Graphene

January 3, 2025 by Deborah Bloomfield

For thousands of years, thinkers argued about whether light is made of particles or waves. At the beginning of the 20th century, scientists realized it was both: massless particles and waves. An even more upsetting realization came a few years later though, when Louis de Broglie put forward the idea that all matter also has wave properties.

Advertisement

This was demonstrated by George Paget Thomson with his student Alexander Reid, and independently in the Davisson-Germer experiment. Electrons shot through a crystal could be made to diffract like light waves passing through slats in a blind, or sea waves entering a narrow harbor. Electron diffraction was revolutionary not just for fundamental physics, but led to the development of cutting-edge technology such as the electron microscope.

Advertisement

The wave-particle duality was demonstrated not only with electrons, but when it came to atoms and even molecules, things got complicated. Electrons are 1,800 times lighter than the lightest atom (something discovered by Thomson’s father J.J. Thomson) so they can more easily diffract through the lattice of a crystal.

Atom diffraction had so far been seen in reflection. The atoms were bounced off a surface that was etched to have a grating. The lines don’t need to be as thin as 10,000 times smaller than a hair, like the most important machine you’ve never heard of makes them. Grids with much larger lines, which could have been made in the 1930s, were enough to showcase this phenomenon. However, researchers haven’t been able to show the diffraction of atoms through a crystal until now.

In a yet-to-be-peer-reviewed paper, Carina Kanitz and colleagues from the Institute of Quantum Technologies and the University of Vienna demonstrated diffractions of hydrogen and helium atoms using a one-atom-thick sheet of graphene. The atoms are shot perpendicularly at the graphene sheet at high energy. This should damage the crystal but it doesn’t, and it’s the secret of this successful experiment.

“Despite the atoms’ high kinetic energy and coupling to the electronic system of graphene, we observe diffraction patterns featuring coherent scattering of up to eight reciprocal lattice vectors. Diffraction in this regime is possible due to the short interaction time of the projectile with the atomically-thin crystal, limiting the momentum transfer to the grating,” the researchers wrote in the paper.

Advertisement

Basically, thanks to the peculiarities of quantum mechanics the higher energy atoms can more easily diffract through the crystal without destroying it.

A preprint describing the experiment is available via arXiv and is yet to be peer-reviewed.

[H/T: New Scientist]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Hunted by the men they jailed, Afghanistan’s women judges seek escape
  2. Over 40% of UK companies face recruitment difficulties – ONS
  3. Russian actor blasts off to attempt a world first: a movie in space
  4. Crocodile Heads Found In Ancient Egyptian Tombs Are A First Of Their Kind

Source Link: Century-Old Challenge Of “Atomic Diffraction” Finally Solved Thanks To Graphene

Filed Under: News

Primary Sidebar

  • Are Space-Made Medicines The Future? Find Out More In Issue 38 Of CURIOUS – Out Now
  • An Alien-Like Fish With A See-Through Head And Green Eyes Lurks In The Ocean’s Dark Depths
  • Africa Wants To Change Misleading World Map, The “Wow!” Signal Was Likely From An Extraterrestrial Source, And Much More This Week
  • A “Good Death”: How Do Doctors Want To Die?
  • People Are Throwing Baby Puffins Off Cliffs In Iceland Again – But Why?
  • Yet Another Ancient Human Skull Turns Out To Be Denisovan
  • Gen Z Might Not Be On Course For A Midlife Crisis – Good News, Right? Wrong
  • Glowing Plants, Punk Ankylosaur, And Has The Wow! Signal Been Solved?
  • Pulsar Fleeing A Supernova Spotted Where Neither Of Them Should Be
  • 20 Years After Hurricane Katrina: Is It Time For A New Approach To Hurricane Classification?
  • Dog Named Scribble Replicates Quantum Factorization Records – So We Tried It Too
  • How Old Is The Solar System? (And How Can We Tell?)
  • Next Week, A Record-Breaking Over 7 Billion People Will See The Total Lunar Eclipse
  • The Goblin Shark Has The Fastest Jaws In The Ocean, Firing Like A Slingshot At Speeds Of 3.1-Meters-Per-Second
  • We Thought Geological Boundaries Were Random. Now, A New Study Has Identified Hidden Patterns
  • Do Fish Sleep?
  • The Biblical Flood Myth That Inspired Noah’s Ark Had A Sinister Twist
  • Massive Review Of 19 Autism Therapies Finds No Strong Evidence And Lack Of Safety Data
  • Giant City-Swallowing Cracks In Earth’s Surface Are A “New Geo-Hydrological Hazard”
  • Three Incredible Telescopes Looked At The Butterfly Nebula To Learn Where Earth Came From
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version