• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Century-Old Challenge Of “Atomic Diffraction” Finally Solved Thanks To Graphene

January 3, 2025 by Deborah Bloomfield

For thousands of years, thinkers argued about whether light is made of particles or waves. At the beginning of the 20th century, scientists realized it was both: massless particles and waves. An even more upsetting realization came a few years later though, when Louis de Broglie put forward the idea that all matter also has wave properties.

Advertisement

This was demonstrated by George Paget Thomson with his student Alexander Reid, and independently in the Davisson-Germer experiment. Electrons shot through a crystal could be made to diffract like light waves passing through slats in a blind, or sea waves entering a narrow harbor. Electron diffraction was revolutionary not just for fundamental physics, but led to the development of cutting-edge technology such as the electron microscope.

Advertisement

The wave-particle duality was demonstrated not only with electrons, but when it came to atoms and even molecules, things got complicated. Electrons are 1,800 times lighter than the lightest atom (something discovered by Thomson’s father J.J. Thomson) so they can more easily diffract through the lattice of a crystal.

Atom diffraction had so far been seen in reflection. The atoms were bounced off a surface that was etched to have a grating. The lines don’t need to be as thin as 10,000 times smaller than a hair, like the most important machine you’ve never heard of makes them. Grids with much larger lines, which could have been made in the 1930s, were enough to showcase this phenomenon. However, researchers haven’t been able to show the diffraction of atoms through a crystal until now.

In a yet-to-be-peer-reviewed paper, Carina Kanitz and colleagues from the Institute of Quantum Technologies and the University of Vienna demonstrated diffractions of hydrogen and helium atoms using a one-atom-thick sheet of graphene. The atoms are shot perpendicularly at the graphene sheet at high energy. This should damage the crystal but it doesn’t, and it’s the secret of this successful experiment.

“Despite the atoms’ high kinetic energy and coupling to the electronic system of graphene, we observe diffraction patterns featuring coherent scattering of up to eight reciprocal lattice vectors. Diffraction in this regime is possible due to the short interaction time of the projectile with the atomically-thin crystal, limiting the momentum transfer to the grating,” the researchers wrote in the paper.

Advertisement

Basically, thanks to the peculiarities of quantum mechanics the higher energy atoms can more easily diffract through the crystal without destroying it.

A preprint describing the experiment is available via arXiv and is yet to be peer-reviewed.

[H/T: New Scientist]

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Hunted by the men they jailed, Afghanistan’s women judges seek escape
  2. Over 40% of UK companies face recruitment difficulties – ONS
  3. Russian actor blasts off to attempt a world first: a movie in space
  4. Crocodile Heads Found In Ancient Egyptian Tombs Are A First Of Their Kind

Source Link: Century-Old Challenge Of “Atomic Diffraction” Finally Solved Thanks To Graphene

Filed Under: News

Primary Sidebar

  • What Happened During Flat-Earthers’ “Final Experiment” In Antarctica
  • “We’re Insisting That Brain Death Is Something That It Isn’t” – How Do We Determine Death?
  • Homo Naledi May Have Buried Its Dead After All, Peer Reviewer Accepts
  • Bathroom Scrollers Beware! Phone Use On The Toilet Could Up Your Risk Of Hemorrhoids By 46 Percent
  • Marsquakes Reveal A Solid Inner Core In The Red Planet
  • For The First Time Ever We Have A Complete Map Of Brain Activity, And It’s Dazzling
  • This Very Strange Fish Has Clear Blood And Is The Only Known Vertebrate To Lack Hemoglobin
  • Government Warning Uses AI Video To Show What Will Happen To Tokyo If Mount Fuji Erupts
  • Astonishing Restored Photos Show NASA’s Pre-Apollo Missions In All Their Glory
  • How To Get More IFLScience: Add Us As A “Preferred Source” On Google
  • “This Appears To Be A Universal Law”: 50-Year-Old Mystery About Our Sun’s Storms May Have Been Solved
  • Watch First-Ever Footage Of A Black Jaguar Mating In The Wild
  • A New Blue Zone? Researchers Find Another Region Where People Live Exceptionally Long Lives
  • LIGO Could Detect Gravitational Waves From An Alien Spacecraft, But There’s A Catch
  • How Outer Space Helps Clouds Form On Earth
  • Teenager With Exceptional “Mental Time Travel” Abilities Sees Past And Future With Rare Clarity
  • Think Hay Fever Season Is Over? Think Again – Fall Allergies Are On The Way
  • Microscopic Engine Is Hottest In The World – Just Like The Core Of The Sun
  • Gerrymandering Explained: How Math Is Used For Political Gain To Win Elections
  • The Longest Sperm On Earth Is 20 Times The Animals’ Body Size, But Whose Is It?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version