• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Chang’e-5 Finds Iron On The Moon, Solving A Mystery The Apollo Missions Couldn’t

January 10, 2023 by Deborah Bloomfield

Samples of the lunar surface returned by the Chang’e-5 mission have revealed abundant iron in a +3-oxidation state. The scientists who studied the samples believe micrometeorites are changing the lunar surface chemistry, converting Fe2+ to a mix of uncharged metal and Fe3+.

Iron is noted for its wide range of oxidation states, from -2 to +7, but on Earth, the most common are +2, and +3, respectively known as ferrous and ferric. However, the samples returned by the Apollo missions contained mostly ferrous or metallic iron (Fe0). This led to the conclusion the lunar surface, and possibly interior, are highly reducing (causing other substances to gain electrons), with important implications for our understanding of lunar chemistry.

Advertisement

If you based your knowledge of the Earth’s geology entirely on six sites chosen semi-randomly, you’d miss some rather important aspects. The Moon is far less diverse of course, but we did something pretty similar in the 50 years after the Apollo missions. In Nature Astronomy, a study of samples returned by the Chang’e-5 mission reveals a lot of ferric iron Apollo didn’t find.

Chang’e-5 was sent to one of the youngest parts of the lunar surface, an area that was volcanically active less than 2 billion years ago. There, it collected agglutinate melt (clumps of material that has adhered) particles around a tenth of a millimeter across, which the paper reports contain ferric iron in abundance: more than 40 percent of the ionized ion is ferric.

This then raises the question of where the Fe3+ comes from. Some attempts to explain the small amount of ferric iron in the Apollo samples had suggested hydrogen or carbon monoxide – either of which can react with iron to produce Fe3+ –  sometimes escaped from the lunar surface. Others pointed to the effects of oxygen atoms peeling off Earth’s atmosphere. However, with not much to explain, the question wasn’t a high priority.

Advertisement

The higher quantities reported by Professor Xu Yigang of the Guangzhou Institute of Geochemistry and co-authors change that. One clue helps explain the ferric iron found here, and possibly the much smaller quantities seen before.  

“As an airless body, the Moon suffers space weathering due to solar wind irradiation and micrometeoroid impacts,” the authors write. The melts show signs of having been hit by micrometeoroids, and the authors propose that these caused a redistribution of charge, with Fe2+ being transformed into a mixture of Fe0 and Fe3+, possibly with the addition of some electrons from elsewhere.

Even a tiny meteorite can create a lot of heat when it hasn’t had any atmospheric friction to slow it down. Pooling of metallic iron particles suggests the energy of meteorite impact raised temperatures in the glass above 1,524 °C (2,743 °F). The authors are unsure whether the charges were rearranged at this point while the material was liquified, or during postshock cooling.

Advertisement

Ironically (sorry), the Apollo missions actually did find at least one higher concentration of ferric iron. Up to a quarter of the iron in some glass beads returned by four of the Apollo missions is ferric, but this was only noticed in the last few years, by which time the impression of a highly reductive surface had already set in.

The paper is open access in Nature Astronomy.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Oil losses from Hurricane Ida rank among worst in 16 years
  2. The Station: Gogoro scoots into a SPAC, a Rivian milestone and Tesla prepares to unleash FSD beta software
  3. Conagra flags price increases to cushion inflation impact, raises sales forecast
  4. A Video From 1938 Has People Convinced Of Time Travel. But What The Hell Is Really Going On?

Source Link: Chang'e-5 Finds Iron On The Moon, Solving A Mystery The Apollo Missions Couldn’t

Filed Under: News

Primary Sidebar

  • Hormone Therapy For Trans Women Shifts Dozens Of Proteins To Align With Their Gender Identity
  • People Are Not Reacting Well After Learning How Cranberries Are Grown
  • The World’s Newest Great Ape Is Also Its Rarest, With Fewer Than 800 Left In The Wild
  • IFLScience We Have Questions: Can Burying Scientists Alive In The Snow Help Us Protect Polar Bears?
  • Scientists Perplexed By 407-Million-Year-Old Fossilized Plant That Doesn’t Follow The Fibonacci Sequence
  • This Giant Goldfish Hybrid Weighs As Much As A 10-Year-Old – A Stark Warning About Dumping Pets
  • Scientists Gave Mice Neanderthal And Denisovan Genes. The Results Were Intriguing
  • 2024 Saw Higher Levels Of Carbon Dioxide In The Atmosphere Than Ever Before
  • Halloween Fireballs Will Grace Our Skies As The Taurid Meteor Showers Arrive
  • Newly Discovered Hunting Megastructures Suggest Pre-Bronze Age Societies More Sophisticated Than Previously Thought
  • What Is Spectroscopy And Why Is It So Important To Science?
  • Parkinson’s “Trigger” Seen For The First Time: Scientists Image The Toxic Molecules Inside The Human Brain
  • What Flying Animals Exist That Are Not Birds?
  • DNA Evidence Uncovers Surprising Origins Of Native Americans
  • Single Gene Swap “Transfers A Behavior” Between Two Species For The First Time
  • Interstellar Object 3I/ATLAS Has A Rare “Anti-Tail”, New Observations Confirm
  • Asteroid Apophis: Animation Shows Asteroid’s Nail-Biting Close Approach To Earth In 2029
  • Titan Breaks A Key Chemistry Rule: What That Means For Alien Life
  • Scientists Studied “Chicago Rat Hole” – They Have Bad News, The South Atlantic’s Magnetic Field Weak Spot Is Growing, And Much More This Week
  • Could This Be The Real Reason Humans Survived And Neanderthals Died Out?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version