• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Chang’e-5 Finds Iron On The Moon, Solving A Mystery The Apollo Missions Couldn’t

January 10, 2023 by Deborah Bloomfield

Samples of the lunar surface returned by the Chang’e-5 mission have revealed abundant iron in a +3-oxidation state. The scientists who studied the samples believe micrometeorites are changing the lunar surface chemistry, converting Fe2+ to a mix of uncharged metal and Fe3+.

Iron is noted for its wide range of oxidation states, from -2 to +7, but on Earth, the most common are +2, and +3, respectively known as ferrous and ferric. However, the samples returned by the Apollo missions contained mostly ferrous or metallic iron (Fe0). This led to the conclusion the lunar surface, and possibly interior, are highly reducing (causing other substances to gain electrons), with important implications for our understanding of lunar chemistry.

Advertisement

If you based your knowledge of the Earth’s geology entirely on six sites chosen semi-randomly, you’d miss some rather important aspects. The Moon is far less diverse of course, but we did something pretty similar in the 50 years after the Apollo missions. In Nature Astronomy, a study of samples returned by the Chang’e-5 mission reveals a lot of ferric iron Apollo didn’t find.

Chang’e-5 was sent to one of the youngest parts of the lunar surface, an area that was volcanically active less than 2 billion years ago. There, it collected agglutinate melt (clumps of material that has adhered) particles around a tenth of a millimeter across, which the paper reports contain ferric iron in abundance: more than 40 percent of the ionized ion is ferric.

This then raises the question of where the Fe3+ comes from. Some attempts to explain the small amount of ferric iron in the Apollo samples had suggested hydrogen or carbon monoxide – either of which can react with iron to produce Fe3+ –  sometimes escaped from the lunar surface. Others pointed to the effects of oxygen atoms peeling off Earth’s atmosphere. However, with not much to explain, the question wasn’t a high priority.

Advertisement

The higher quantities reported by Professor Xu Yigang of the Guangzhou Institute of Geochemistry and co-authors change that. One clue helps explain the ferric iron found here, and possibly the much smaller quantities seen before.  

“As an airless body, the Moon suffers space weathering due to solar wind irradiation and micrometeoroid impacts,” the authors write. The melts show signs of having been hit by micrometeoroids, and the authors propose that these caused a redistribution of charge, with Fe2+ being transformed into a mixture of Fe0 and Fe3+, possibly with the addition of some electrons from elsewhere.

Even a tiny meteorite can create a lot of heat when it hasn’t had any atmospheric friction to slow it down. Pooling of metallic iron particles suggests the energy of meteorite impact raised temperatures in the glass above 1,524 °C (2,743 °F). The authors are unsure whether the charges were rearranged at this point while the material was liquified, or during postshock cooling.

Advertisement

Ironically (sorry), the Apollo missions actually did find at least one higher concentration of ferric iron. Up to a quarter of the iron in some glass beads returned by four of the Apollo missions is ferric, but this was only noticed in the last few years, by which time the impression of a highly reductive surface had already set in.

The paper is open access in Nature Astronomy.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Oil losses from Hurricane Ida rank among worst in 16 years
  2. The Station: Gogoro scoots into a SPAC, a Rivian milestone and Tesla prepares to unleash FSD beta software
  3. Conagra flags price increases to cushion inflation impact, raises sales forecast
  4. A Video From 1938 Has People Convinced Of Time Travel. But What The Hell Is Really Going On?

Source Link: Chang'e-5 Finds Iron On The Moon, Solving A Mystery The Apollo Missions Couldn’t

Filed Under: News

Primary Sidebar

  • Fossil Foot Shows Lucy Shared Space With Another Hominin Who Might Be Our True Ancestor
  • People Are Leaving Their Duvets Outside In The Cold This Winter, But Does It Actually Do Anything?
  • Crows Can Hold A Grudge Way Longer Than You Can
  • Scientists Say The Human Brain Has 5 “Ages”. Which One Are You In?
  • Human Evolution Isn’t Fast Enough To Keep Up With Pace Of The Modern World
  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Is The Perfect Pebble The Key To A Prosperous Penguin Partnership?
  • Krampusnacht: What’s Up With The Terrifying Christmas-Time Pagan Parades In Europe?
  • Why Does The President Pardon A Turkey For Thanksgiving?
  • In 1954, Soviet Scientist Vladimir Demikhov Performed “The Most Controversial Experimental Operation Of The 20th Century”
  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version