• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Colliding Photons In Crossed Beams Of Light Create Virtual Particles That Test The Standard Model

August 6, 2025 by Deborah Bloomfield

Particles known as tensor mesons are created when high-energy photons interact. These mesons have now been proposed to have a larger effect on photon behavior than previously thought, and provide a new way to test the validity of the Standard Model of particle physics.

Here’s an experiment any reader can try. Take two torches into a dark room. Have the beams cross and then turn one on and off. Whatever the one beam’s status, the other appears unaffected. In other words, photons appear capable of passing through each other without consequences.

Naturally, this experiment isn’t conducted with the precision needed to observe subtle effects, but even when repeated with lasers, the results are normally the same. However, under the right circumstances, exceptions emerge. When particle accelerators make heavy ions almost collide, the interactions can radiate light whose interacting photons sometimes produce virtual particles.

Such particles exist only briefly before winking out of existence, but while they do, they can shape reality, including affecting other photons, causing slight changes in direction. New research shows that tensor mesons have a more important role in these redirections than previously recognized.

Virtual particles take advantage of the quantum capacity to both exist and not exist at the same time, in superpositions of each. This makes them impossible to measure directly, but that doesn’t mean they are purely hypothetical.

“Even though these virtual particles cannot be observed directly, they have a measurable effect on other particles,” said Dr Jonas Mager of TU Wien in a statement. “If you want to calculate precisely how real particles behave, you have to take all conceivable virtual particles into account correctly. That’s what makes this task so difficult – but also so interesting.”



An example of this process involves two photons scattering off each other, and producing an electron-positron pair. Before the products annihilate each other, photons can be affected by their presence. When the interacting photons have shorter wavelengths, and therefore the energy is greater, heavier particles can be produced, including mesons, composed of a quark and an antiquark.

“There are different types of these mesons,” said Mager. “We have now been able to show that one of them, the tensor mesons, has been significantly underestimated.” The influence of the tensor mesons turns out not only to be considerably greater than previously thought for interactions below 1.5 billion electron volts, but in the opposite direction.

Mager and co-authors reached these conclusions using holographic quantum chromodynamics (QCD), which involves mapping the usual four dimensions of space and time onto a space in which gravity acts as a fifth dimension. “The tensor mesons can be mapped onto five-dimensional gravitons, for which Einstein’s theory of gravity makes clear predictions,” said Professor Anton Rebhan.

Computer simulations and analytical results reach the same conclusions on tensor mesons’ significance, the authors claim. Moreover, holographic QCD has been found to accurately represent aspects of light-light scattering that other methods do not. 

Nevertheless, the work has yet to be confirmed experimentally, although Rebhan expressed the hope that the study will encourage heavy ion trials that will do that. The incentive to make this work a priority, given the scarce capacity of large particle accelerators, is that in the process, it could probe tension between the Standard Model of particle physics and some experimental data.

“Through the effect of light-light scattering, [tensor mesons] influence the magnetic properties of muons, which can be used to test the Standard Model of particle physics with extreme accuracy,” Mager said.

The study is published in Physical Review Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Dinosaur Prints Found Under Restaurant Table Confirmed As 100 Million Years Old
  3. Archax: Japanese Engineers Make Transformer Robot That Actually Works
  4. How Do We Know There Is Anything Beyond The Observable Universe?

Source Link: Colliding Photons In Crossed Beams Of Light Create Virtual Particles That Test The Standard Model

Filed Under: News

Primary Sidebar

  • The Bizarre 1997 Experiment That Made A Frog Levitate
  • There’s A Very Good Reason Why October 1582 On Your Phone Is Missing 10 Days
  • Skynet-1A: Military Spacecraft Launched 56 Years Ago Has Been Moved By Persons Unknown
  • There’s A Simple Solution To Helping Avoid Erectile Dysfunction (But You’re Not Going To Like It)
  • Interstellar Object 3I/ATLAS May Be 10 Billion Years Old, This Rare Spider Is Half-Female, Half-Male Split Down The Middle, And Much More This Week
  • Why Do Trains Not Have Seatbelts? It’s Probably Not What You Think
  • World’s Driest Hot Desert Just Burst Into A Rare And Fleeting Desert Bloom
  • Theoretical Dark Matter Infernos Could Melt The Earth’s Core, Turning It Liquid
  • North America’s Largest Mammal Once Numbered 60 Million – Then Humans Nearly Drove It To Extinction
  • North America’s Largest Ever Land Animal Was A 21-Meter-Long Titan
  • A Two-Headed Fossil, 50/50 Spider, And World-First Butt Drag
  • Interstellar Comet 3I/ATLAS Is Losing Buckets Of Water Every Second – And It’s Got Cyanide
  • “A Historic Shift”: Renewables Generated More Power Than Coal Globally For First Time
  • The World’s Oldest Known Snake In Captivity Became A Mom At 62 – No Dad Required
  • Biggest Ocean Current On Earth Is Set To Shift, Spelling Huge Changes For Ecosystems
  • Why Are The Continents All Bunched Up On One Side Of The Planet?
  • Why Can’t We Reach Absolute Zero?
  • “We Were Onto Something”: Highest Resolution Radio Arc Shows The Lowest Mass Dark Object Yet
  • How Headsets Made For Cyclists Are Giving Hearing And Hope To Kids With Glue Ear
  • It Was Thought Only One Mammal On Earth Had Iridescent Fur – Turns Out There’s More
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version