• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Common Household Waste Product Can Make Concrete 30 Percent Stronger

August 24, 2023 by Deborah Bloomfield

Researchers in Australia have used spent coffee grounds to make concrete 30 percent stronger. Simply by replacing a percentage of sand with waste coffee, something common to many households, it is possible to make construction more efficient and greener. 

As a household item, coffee grounds are everywhere. It is currently estimated that around 60 million tons are produced across the world each year, most of which is simply thrown away. That’s a lot of waste, and it contributes to the production of methane gas when it ends up in landfills, which contributes to the ongoing climate crisis. There is therefore a need to develop new recycling solutions that can help address the accumulation of this waste. That’s where the work of the team from RMIT University comes into play. 

Advertisement

“The inspiration for our work was to find an innovative way of using the large amounts of coffee waste in construction projects rather than going to landfills – to give coffee a ‘double shot’ at life,” lead author Dr Rajeev Roychand, a Postdoctoral Research Fellow at RMIT, said in a statement.

Because spent coffee consists of fine particles, they were proposed as useful resources for civil and commercial applications. To test the idea, the team collected spent coffee grounds from cafes in Melbourne, Australia, and then dried them. The coffee was then heated through a process called “pyrolysis”, which involves heating organic material, such as a biomass, in the absence of oxygen. This turned the coffee grounds into biochar.

The team then designed 12 mixes to compare the effects the grounds had when made into concrete. This consisted of spent grounds that were untreated (raw), and grounds that were heated to 350°C (662°F) or 500°C (932°F), respectively. These different products were then added to Portland cement at different percentages volumes (0, 5, 10, 15, and 20 percent volume) as a replacement for sand. 

The concrete is then molded and cured at room temperature for 24 hours before being demolded and cured in water tanks to be tested for its compressive strength (to see how far it can be stressed before it fractures) and performance potential. This mix was then analyzed with X-ray diffraction (XRD) and scanning electron microscopes (SEM). 

Advertisement

The results show that a mix consisting of 15 percent pyrolyzed grounds at 350°C significantly improved the structural properties of concrete – around 29.3 percent improvement in compressive strength. 

More work needs to be done to continue developing and testing this method, but it is already showing promise and gaining interest. 

“Several councils that are battling with the disposal of organic waste have shown interest in our work”, Roychand added.  

“They have already engaged us for their upcoming infrastructure projects incorporating pyrolysed forms of different organic wastes.”

A wakeup call for the construction industry

According to the joint lead author, Dr Shannon Kilmartin-Lynch, a Vice-Chancellor’s Indigenous Postdoctoral Research Fellow at RMIT, the results of this study have significant implications for the construction industry across the world. 

“Inspiration for my research, from an Indigenous perspective, involves Caring for Country, ensuring there’s a sustainable life cycle for all materials and avoiding things going into landfill to minimise the impact on the environment,” Kilmartin-Lynch explained.

“The concrete industry has the potential to contribute significantly to increasing the recycling of organic waste such as used coffee.

“Our research is in the early stages, but these exciting findings offer an innovative way to greatly reduce the amount of organic waste that goes to landfill.”

Advertisement

Importantly, the use of biochar in construction projects will relax pressure on the need for fine sand, which is a scares resource across the world. Sand is among the most extracted solid materials on the planet and the second most used resource after water. Moreover, the continued extraction of sand is extremely harmful to the environment.

“The ongoing extraction of natural sand around the world – typically taken from river beds and banks – to meet the rapidly growing demands of the construction industry has a big impact on the environment,” team leader Professor Jie Li explained.

“With a circular-economy approach, we could keep organic waste out of landfill and also better preserve our natural resources like sand.”

The study was published in the Journal of Cleaner Production.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. Study Reveals Which Humans Survived The Last Ice Age And Which Didn’t

Source Link: Common Household Waste Product Can Make Concrete 30 Percent Stronger

Filed Under: News

Primary Sidebar

  • The Pacific Ocean Is So Vast It Contains Its Own Antipodes
  • World’s Tallest Bridge Over “Crack In The Earth” Gets Daunting Load Test By Fleet Of 96 Trucks
  • Mars’s Interior Still Has Evidence Of Ancient Impact, Dead NASA Mission Tells Us
  • A Soviet Physicist Once Survived A Proton Beam Through The Head – This Is How
  • Outstanding Photos Show First Baby Planet Growing In The Grooves Of A Stellar Disk
  • The “Plague Of Justinian” May Have Been The First Pandemic. DNA At A Mass Grave Has Finally Identified Its Cause.
  • Michelson And Morley’s “Failed” 1887 Experiment Changed The Course Of Physics, And Put The Aether To Bed
  • Only 19 US States Require School Sex Education To Be Medically Accurate, Finds Sweeping Review
  • Do Any Frogs Or Toads Give Birth To Live Young? Just One: Meet The Western Nimba Toad
  • Tasmanian Tigers’ Genetics May Have Doomed Them Long Before Humans Came Along
  • Scientists “Wake Up” Ancient Life That’s Been Under The Seabed For 100 Million Years
  • Measurable Brain Changes Following Cognitive Behavioral Therapy Identified For The First Time
  • “It Was Really Unexpected”: Scientists Stunned By Glowing Plants, And All It Takes Is An Injection
  • Scientists Created Gene-Edited Albino Cane Frogs To Unravel The Mysteries Of Natural Selection
  • In Vivo Vs In Vitro: What Do They Actually Mean?
  • IFLScience The Big Questions: What Will The Fossils Of The Future Look Like?
  • Finally, A Successful Starship Launch – What This Means For The Moon Landings
  • 26 Years After Launch, The ISS Will Try A New Way To Stay In Orbit Next Month
  • The World Map As You Know It Is Misleading – Now Africa Wants To Change That
  • “It’s Totally Wacky”: Oldest Known Ankylosaur Had A Kind Of Armor Never Seen In Any Vertebrate – Living Or Extinct
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version