• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Could Thorium Offer Long-Term Potential As A Nuclear Energy Source?

December 10, 2024 by Deborah Bloomfield

Nuclear energy is a controversial subject for many people. Although traditional nuclear energy, derived from uranium or plutonium, has been hailed as a reliable, low-carbon energy source, it has also raised significant objections from environmentalists, the public, and policymakers alike. Many of these objections have related to nuclear energy’s overall safety, its high costs, limited resource availability, and considerable issues with its long-term waste management and environmental impacts.

This is why the nuclear industry is interested in alternative fuels for future nuclear reactors, and one candidate may be thorium, which has been gaining scientific interest for some time.  

Advertisement

Thorium is a naturally occurring, silvery, and slightly radioactive metal that was named after Thor, the god of thunder in Norse mythology. The metal is significantly (three to four times) more abundant than uranium is in the Earth’s crust, but to date, it has had very little use as a power source. There are a few reasons for this, though the most important is that thorium is not fissile, which means it cannot sustain a nuclear chain reaction like isotopes of uranium (particularly uranium-235).

However, there are ways to use thorium to create fissile materials suitable for fuel. Thorium-232 is the only naturally occurring thorium isotope, but it is fissionable rather than fissile. This means it needs high-energy neutrons to undergo fission – a process where an atomic nucleus is split into smaller nuclei, releasing large amounts of energy. However, irradiating thorium-232 so that it absorbs a single neutron allows it to transmute into uranium-233, a fissile material that can be used to fuel nuclear reactors.

This is known as the breeding process, and usually takes place in special reactors known as breeding reactors, which are designed to create more fissile material than they use.

This is one of the reasons why nuclear researchers are interested in it. Because of its natural abundance across the world, it could become a potential replacement for uranium and be used to create energy over the long term. At the same time, uranium-233, the primary fission material produced from thorium, is harder to use for weapons purposes than uranium-235 or plutonium-239. This means there is less of a risk its wider use will pose a proliferation risk.

Advertisement

The thorium fuel cycle also produces less long-lived radioactive waste compared to the uranium and plutonium cycle, which potentially makes it much more environmentally friendly too.

“Because of its abundance and its fissile material breeding capability, thorium could potentially offer a long-term solution to humanity’s energy needs,” Kailash Agarwal, a Nuclear Fuel Cycle Facilities Specialist at the International Atomic Energy Agency (IAEA) said in a 2023 statement regarding an IAEA report on thorium.

“Many countries consider thorium as both a viable and very attractive option for generating power and meeting their growing energy needs.”

However, there are challenges here as well. The most obvious issue relates to the breeding process. Thorium requires a neutron source to create uranium-233, necessitating the use of an initial fissile material to start the process (e.g. uranium-235 or plutonium). It is also expensive to extract, despite its abundance in the Earth. Due to uranium’s current predominance, there is not much demand for thorium extraction on its own. Instead, it tends to be a by-product, and requires extraction methods that are currently more expensive than those used for uranium.

Advertisement

This, however, could change if the demand for thorium changed in the future.

At the same time, the nuclear industry is not currently set up to deal with thorium as a fuel. In order to accommodate it, existing uranium-focused reactors would either need to be retrofitted (which is also expensive) or new facilities would need to be developed. At present, commercial thorium reactors require advanced technologies, like molten salt reactors, which are not widely used. Further research, development, and testing of thorium-powered installations is needed before thorium is likely to push uranium from its position in the industry.

Despite these challenges, the global demand for energy continues to rise alongside the need to achieve global climate objectives. We desperately need alternative sustainable sources of reliable energy, so thorium may yet get its chance to perform in the future.  

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Two UK tech figures plan to row the Atlantic for charity supporting minority entrepreneurs
  2. Microsoft now more focused on ‘killing Zoom’ than Slack, says Stewart Butterfield
  3. Taiwan central bank says currency stable, flags more modest intervention
  4. Growing Bones And Gut Feelings: The Latest Steps On The Quest To Map Every Human Cell

Source Link: Could Thorium Offer Long-Term Potential As A Nuclear Energy Source?

Filed Under: News

Primary Sidebar

  • The Science Of Magic: Find Out More In Issue 41 Of CURIOUS – Out Now
  • People Sailed To Australia And New Guinea 60,000 years ago
  • How Do Cells Know Their Location And Their Role In The Body?
  • What Are Those Strange Eye “Floaters” You See In Your Vision?
  • Have We Finally “Seen” Dark Matter? Mysterious Ancient Foot May Be From Our True Ancestor, And Much More This Week
  • The Unexpected Life Hiding Out in the Great Pacific Garbage Patch
  • Scientists Detect “Switchback” Phenomenon In Earth’s Magnetosphere For The First Time
  • Inside Your Bed’s “Dirty Hidden Biome” And How To Keep Things Clean
  • “Ego Death”: How Psychedelics Trigger Meditation-Like Brain Waves
  • Why We Thrive In Nature – And Why Cities Make Us Sick
  • What Does Moose Meat Taste Like? The World’s Largest Deer Is A Staple In Parts Of The World
  • 11 Of The Last Spix’s Macaws In The Wild Struck Down With A Deadly, Highly Contagious Virus
  • Meet The Rose Hair Tarantula: Pink, Predatory, And Popular As A Pet
  • 433 Eros: First Near-Earth Asteroid Ever Discovered Will Fly By Earth This Weekend – And You Can Watch It
  • We’re Going To Enceladus (Maybe)! ESA’s Plans For Alien-Hunting Mission To Land On Saturn’s Moon Is A Go
  • World’s Oldest Little Penguin, Lazzie, Celebrates 25th Birthday – But She’s Still Young At Heart
  • “We Will Build The Gateway”: Lunar Gateway’s Future Has Been Rocky – But ESA Confirms It’s A Go
  • Clothes Getting Eaten By Moths? Here’s What To Do
  • We Finally Know Where Pet Cats Come From – And It’s Not Where We Thought
  • Why The 17th Century Was A Really, Really Dreadful Time To Be Alive
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version