• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Dinosaur-Killing Impactor Was Probably A Rare Asteroid From Beyond Jupiter

August 15, 2024 by Deborah Bloomfield

The minerals left behind when the Chicxulub Crater was created, ending the Cretaceous Era and the dinosaurs’ reign, indicate it was an asteroid, not a comet. However, the same analysis indicates it came from the outer Solar System, rather than the main asteroid belt, knowledge that is useful, if disheartening, in trying to prevent the next such event.

Advertisement

When evidence first emerged that the demise of the non-avian dinosaurs was triggered by an impact from space, no one knew what type of object was responsible. Many people referred to it as a comet, perhaps because they’re more familiar. This suspicion was reinforced by observations of comet Shoemaker-Levy 9 smashing into Jupiter, and the films Deep Impact and Don’t Look Up. 

On the other hand, cometary impacts are hard to predict more than a few months ahead of time. It’s much easier to prepare for a hit from an asteroid rattling around the inner Solar System, so NASA took the first step by testing our capacity to move Dimorphos, with great success. Knowing which category the dino-killer fell into could help us prepare for future dangers, at least a little.

To assist that goal, Dr Mario Fischer-Gödde of the University of Cologne and colleagues investigated the isotope ratios of samples of ruthenium deposited by the object. Ruthenium is one of the metals that are rare in the Earth’s crust, having been mostly captured by the core, but are relatively abundant in space rocks. The concentration of these metals at the boundary between rocks deposited in the Cretaceous and Paleogene periods is what alerted scientists to the possibility of an impact before the Chicxulub Crater was found.

Ruthenium has an unusually high seven stable isotopes, providing plenty of opportunity for their relative abundance to vary. Fischer-Gödde and co-authors report ratios of five of these isotopes are consistent at the Cretaceous-Paleogene boundary at five sites across Europe within measuring uncertainties.

For comparison, the authors looked at ratios from meteorites and ruthenium released when five other large craters were produced over the last 541 million years. The isotope ratios for ruthenium released by volcanoes, and for 3.2-3.5 billion year-old impacts, were also compared.

Advertisement

Based on this, the authors conclude the dino-killer was a C-type asteroid, the sort that produce carbonaceous chondrite meteorites, a rare type known to contain the molecules needed to build life. 

C-type asteroids formed in the outer Solar System, beyond the orbit of Jupiter. Although comets also originate at such distances, the meteorites they produce, known as CI chondrites, have very different ruthenium ratios.

During the Archaean Age, C-type asteroids were the ones to watch out for, had there been anything beyond single-celled organisms to do the watching. On the other hand, the other five impacts investigated from the age of animals all appear to have been S-type asteroids, so these are probably the most likely threat.

A C-type asteroid could be slung into an orbit around the inner Solar System that makes many passes by Earth, giving us opportunities to detect, and subsequently deflect, it. However, there is also a great danger that it will come in from a distance where we are unlikely to spot it and hit us with only months or a few years’ warning.

Advertisement

S-type asteroids, on the other hand, are much more likely to give us plenty of opportunity to take evasive action. Consequently, it’s encouraging that most of the big impacts, once the Solar System settled down, came from these.

One recent study proposed a comet was the most likely impactor, but this was based more on modeling than hard evidence. Comets would also have a high likelihood of a direct strike, rather than one preceded by thousands of loops around the inner Solar System. On the other hand, at least the gasses released as one approaches the Sun might help us spot it a little earlier.

The study is published in Science.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Toshiba says detailed talks on buyouts meaningful only after option review
  2. Dollar at 2021 highs even as U.S. government shutdown looms
  3. Artemis I Is Officially Go For Launch. Here’s How To Watch It Live Next Week
  4. Visiting Urban Parks Linked To Reduced Use Of Prescription Medications

Source Link: Dinosaur-Killing Impactor Was Probably A Rare Asteroid From Beyond Jupiter

Filed Under: News

Primary Sidebar

  • For First Time, The Mass And Distance Of A Solitary “Rogue” Planet Has Been Measured
  • For First Time, Three Radio-Emitting Supermassive Black Holes Seen Merging Into One
  • Why People Still Eat Bacteria Taken From The Poop Of A First World War Soldier
  • Watch Rare Footage Of The Giant Phantom Jellyfish, A 10-Meter-Long “Ghost” That’s Only Been Seen Around 100 Times
  • The Only Living Mammals That Are Essentially Cold-Blooded Are Highly Social Oddballs
  • Hottest And Earliest Intergalactic Gas Ever Found In A Galaxy Cluster Challenges Our Models
  • Bayeux Tapestry May Have Been Mealtime Reading Material For Medieval Monks
  • Just 13 Letters: How The Hawaiian Language Works With A Tiny Alphabet
  • Astronaut Mouse Delivers 9 Pups A Month After Return To Earth
  • Meet The Moonfish, The World’s Only Warm-Blooded Fish That’s 5°C Hotter Than Its Environment
  • Neanderthals Repeatedly Dumped Horned Skulls In This Cave For An Unknown Ritual Purpose
  • Will The Earth Ever Stop Spinning?
  • Ammonites Survived The Asteroid That Killed The Dinosaurs, So What Killed Them Not Long After?
  • Why Do I Keep Zapping My Cat? The Strange Science Of Cats And Static Electricity
  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version