• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

“Dynamic Soaring” Could See Interstellar Probes Reach Super Speeds

December 6, 2022 by Deborah Bloomfield

Covering interstellar distances in a human lifetime is far from easy. Going at 1 percent of the speed of light, it would take over 400 years to reach the closest star, and we have not been able to propel any spacecraft even close to that speed. But a new method aims to get to those speeds and maybe more – and it takes inspiration from the mighty albatross.

Chemical propulsion can be very useful in achieving high speeds pretty quickly, but there’s the drawback in that you need to carry the fuel with you, which means you need to be able to generate more thrust to shift the extra fuel and so on. It’s a huge issue when it comes to rocket science. A realistic alternative is ion propulsion, used to slowly and successfully maneuver the Dawn spacecraft, but it would take an equally long time to reach enough speed with such a steady but small acceleration.

Advertisement

Solar sails hold a more intriguing possible approach. Proposals such as the Breakthrough Starshot see lasers used to massively accelerate a spacecraft the size of a credit card to one-fifth the speed of light. But, you need to build a very powerful laser. A similar method using sunlight might also work, although not up to such a high speed.

Photons, the particle of light, are massless, but they carry momentum so they can still push a solar sail. An alternative would be to use the solar wind, the stream of charged particles released by the Sun; not as fast or as numerous as photons, but they could pack a pretty punch, with speeds between 250 and 750 kilometers per second (up to over one million miles per hour).

Researchers from McGill University and Tau Zero Foundation have developed a proof-of-concept method that mimics the maneuvers that seabirds, and even radio controlled glider pilots, can do to use the wind to accelerate faster to a speed greater than that of the wind itself.

Advertisement

The idea is to use the concept of “dynamic soaring” in the solar wind in the same manner, by bouncing back and forth between zones where the wind is moving at different speeds; this might allow a spacecraft to reach 2 percent of the speed of light in 2.5 years – and without using any fuel. So this approach could potentially be used as the first stage of an interstellar mission.

To achieve this dynamic soaring, you can’t use mechanical wings. The researchers propose instead to use a plasma wave antenna that would act like a windmill to extract power from the interplanetary medium.

“This paper is just a first look through a door opening into an entirely new class of propulsion; much work remains to be done,” McGill Interstellar Flight Research group wrote on a Twitter thread about this proposal.

Advertisement

The study is published in Frontiers in Space Technologies.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Today’s best AirPods deals: latest model AirPods, AirPods Pro and AirPods Max
  2. East Libyan forces and Chadian rebels clash in southern Libya
  3. Iran rejects U.S. demand for U.N. inspectors’ access to nuclear site
  4. Taiwan won’t be forced to bow to China, president says

Source Link: “Dynamic Soaring” Could See Interstellar Probes Reach Super Speeds

Filed Under: News

Primary Sidebar

  • Woylies Boing Back Into Western Australia Thanks To Groundbreaking Wildlife Project
  • North America’s Oldest Pterosaur And Turtle Fossils Found In Arizona’s Petrified Forest
  • Proposed “Dark Dwarfs” Near The Galactic Center Could Reveal The Nature Of Dark Matter
  • Watch: 18-Kilometer-High Ash Cloud Looms Over Indonesia’s Mount Lewotobi Laki Laki After “Explosive” Eruption
  • “ShipGoo001”: Mystery Of Entirely New Lifeform Discovered Coating A Great Lakes Ship
  • Rare White Humpback Whale Calf Filmed By Drone Off Australia’s East Coast
  • Who Was Buried At Cave Of Salome: A Female Disciple, Jesus’ Midwife, Or A Princess?
  • “Hidden” Changes To US Health Data Swapping “Gender” For “Sex” Spark Fears For Public Trust
  • Easter Island Was Never As Isolated As We Thought – Study Puts That “Strange Argument” To Bed
  • If Birds Are Dinosaurs, Why Are None As Big As T. Rexes?
  • Psychologists Demonstrate Illusion That Could Be Screwing Up Our Perception Of Time
  • Why Are So Many Enormous Roman Shoes Being Discovered At Hadrian’s Wall?
  • Scientists Think They’ve Pinpointed Structural Differences In Psychopaths’ Brains
  • We’ve Found Our Third-Ever Interstellar Visitor, Orcas Filmed Kissing (With Tongues) In The Wild, And Much More This Week
  • The “Eyes Of Clavius” Will Be Visible On The Moon Today, Thanks To Clair-Obscur Effect
  • Shockingly High Microplastic Levels Found On Remote Mediterranean Coral Reef Island
  • Interstellar Object, Cheesy Nightmares, And Smooching Orcas
  • World’s Largest Martian Meteorite Up For Auction Could Reach Whopping $2-4 Million
  • Kimalu The Beluga Whale Undergoes Pioneering Surgery And Becomes First Beluga To Survive General Aesthetic
  • The 1986 Soviet Space Mission That’s Never Been Repeated: Mir To Salyut And Back Again
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version