• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

“Dynamic Soaring” Could See Interstellar Probes Reach Super Speeds

December 6, 2022 by Deborah Bloomfield

Covering interstellar distances in a human lifetime is far from easy. Going at 1 percent of the speed of light, it would take over 400 years to reach the closest star, and we have not been able to propel any spacecraft even close to that speed. But a new method aims to get to those speeds and maybe more – and it takes inspiration from the mighty albatross.

Chemical propulsion can be very useful in achieving high speeds pretty quickly, but there’s the drawback in that you need to carry the fuel with you, which means you need to be able to generate more thrust to shift the extra fuel and so on. It’s a huge issue when it comes to rocket science. A realistic alternative is ion propulsion, used to slowly and successfully maneuver the Dawn spacecraft, but it would take an equally long time to reach enough speed with such a steady but small acceleration.

Advertisement

Solar sails hold a more intriguing possible approach. Proposals such as the Breakthrough Starshot see lasers used to massively accelerate a spacecraft the size of a credit card to one-fifth the speed of light. But, you need to build a very powerful laser. A similar method using sunlight might also work, although not up to such a high speed.

Photons, the particle of light, are massless, but they carry momentum so they can still push a solar sail. An alternative would be to use the solar wind, the stream of charged particles released by the Sun; not as fast or as numerous as photons, but they could pack a pretty punch, with speeds between 250 and 750 kilometers per second (up to over one million miles per hour).

Researchers from McGill University and Tau Zero Foundation have developed a proof-of-concept method that mimics the maneuvers that seabirds, and even radio controlled glider pilots, can do to use the wind to accelerate faster to a speed greater than that of the wind itself.

Advertisement

The idea is to use the concept of “dynamic soaring” in the solar wind in the same manner, by bouncing back and forth between zones where the wind is moving at different speeds; this might allow a spacecraft to reach 2 percent of the speed of light in 2.5 years – and without using any fuel. So this approach could potentially be used as the first stage of an interstellar mission.

To achieve this dynamic soaring, you can’t use mechanical wings. The researchers propose instead to use a plasma wave antenna that would act like a windmill to extract power from the interplanetary medium.

“This paper is just a first look through a door opening into an entirely new class of propulsion; much work remains to be done,” McGill Interstellar Flight Research group wrote on a Twitter thread about this proposal.

Advertisement

The study is published in Frontiers in Space Technologies.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Today’s best AirPods deals: latest model AirPods, AirPods Pro and AirPods Max
  2. East Libyan forces and Chadian rebels clash in southern Libya
  3. Iran rejects U.S. demand for U.N. inspectors’ access to nuclear site
  4. Taiwan won’t be forced to bow to China, president says

Source Link: “Dynamic Soaring” Could See Interstellar Probes Reach Super Speeds

Filed Under: News

Primary Sidebar

  • There Are Just Two Places In The World With No Speed Limits For Cars
  • Three Astronauts Are Stranded In Space Again, After Their Ride Home Was Struck By Space Junk
  • Snail Fossils Over 1 Million Years Old Show Prehistoric Snails Gave Birth to Live Young
  • “Beautiful And Interesting”: Listen To One Of The World’s Largest Living Organisms As It Eerily Rumbles
  • First-Ever Detection Of Complex Organic Molecules In Ice Outside Of The Milky Way
  • Chinese Spacecraft Around Mars Sends Back Intriguing Gif Of Interstellar Comet 3I/ATLAS
  • Are Polar Bears Dangerous? How “Bear-Dar” Can Keep Polar Bears And People Safe (And Separate)
  • Incredible New Roman Empire Map Shows 300,000 Kilometers Of Roads, Equivalent To 7 Times Around The World
  • Watch As Two Meteors Slam Into The Moon Just A Couple Of Days Apart
  • Qubit That Lasts 3 Times As Long As The Record Is Major Step Toward Practical Quantum Computers
  • “They Give Birth Just Like Us”: New Species Of Rare Live-Bearing Toads Can Carry Over 100 Babies
  • The Place On Earth Where It Is “Impossible” To Sink, Or Why You Float More Easily In Salty Water
  • Like Catching A Super Rare Pokémon: Blonde Albino Echnida Spotted In The Wild
  • Voters Live Longer, But Does That Mean High Election Turnout Is A Tool For Public Health?
  • What Is The Longest Tunnel In The World? It Runs 137 Kilometers Under New York With Famously Tasty Water
  • The Long Quest To Find The Universe’s Original Stars Might Be Over
  • Why Doesn’t Flying Against The Earth’s Rotation Speed Up Flight Times?
  • Universe’s Expansion Might Be Slowing Down, Remarkable New Findings Suggest
  • Chinese Astronauts Just Had Humanity’s First-Ever Barbecue In Space
  • Wild One-Minute Video Clearly Demonstrates Why Mercury Is Banned On Airplanes
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version