• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Electron’s Charge Seen Splintering Into Fractions In Graphene For The First Time

February 22, 2024 by Deborah Bloomfield

The elementary charge is a fundamental constant of the universe. We call it simply e. Protons have a value of +e and electrons are -e. Depending on how familiar you are with physics, you might have heard that the quarks that make protons have a fractional charge, but we do not worry about that because they are never by themselves. And electrons don’t have components, so the elementary charge is truly elementary in all material interactions. Well, until it isn’t, as a new study has demonstrated. 

Overwhelmingly across materials and phenomena, the charge of an electron is -e, but some materials experience the fractional quantum Hall effect. In a handful of systems, under very high and carefully tuned magnetic fields, an exotic electronic state develops where its charge is no longer -e.

Advertisement

The new work uses graphene, which is considered a very interesting material. It is a single layer of carbon atoms, but it is incredibly strong and a good conductor. In this experiment, the team stuck five layers of graphene together like steps on a staircase, stamped them between two hexagonal boron nitride layers, and put the hybrid material at extremely low temperatures. The team saw something very weird as they sent electrons through this material.

Electrons passed through it as fractions of the total charge – but there was no external magnetic field. It is therefore the first evidence of the fractional quantum anomalous Hall effect in crystalline graphene, deemed anomalous because it does not have a magnetic field. Researchers were not expecting graphene to be able to do that.

“This five-layer graphene is a material system where many good surprises happen,” study author Long Ju, assistant professor of physics at MIT, said in a statement. “Fractional charge is just so exotic, and now we can realize this effect with a much simpler system and without a magnetic field. That in itself is important for fundamental physics. And it could enable the possibility for a type of quantum computing that is more robust against perturbation.”

This is not the first time that the team witnessed something peculiar in a pentalayer of graphene. They reported last year that it also exhibited a “multiferroic” state. Twisted graphene is also superconductive at a very low temperature – just 1.7 Kelvins above absolute zero. The lab had a new fridge installed just last summer to make these investigations.

Advertisement

“The day we saw it, we didn’t recognize it at first,” said lead author Zhengguang Lu. “Then we started to shout as we realized, this was really big. It was a completely surprising moment.”

“This was probably the first serious samples we put in the new fridge,” added co-first author Tonghang Han. “Once we calmed down, we looked in detail to make sure that what we were seeing was real.”

The group will continue to explore how multilayers of graphene might showcase different and rare electronic states.

“We are diving in to explore many fundamental physics ideas and applications,” Ju added. “We know there will be more to come.”

Advertisement

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Electron's Charge Seen Splintering Into Fractions In Graphene For The First Time

Filed Under: News

Primary Sidebar

  • Very First Humans To Make And Use Tools Imported Their Stones 3 Million Years Ago
  • 300,000-Year-Old Skull Shows Neanderthals Lived Alongside Another Ancient Human Ancestor
  • “An Underwater Photographer’s Dream”: Watch Big-Bellied Seahorses Passing Eggs Between Each Other
  • The Largest Moon In The Solar System Could Be A Dark Matter Detector
  • First Insect Proven To Use Milky Way For Orientation Uses Its Superpower To Push Big Balls Of Poop
  • How An Eclipse And One Of The World’s Most Dangerous Volcanoes Changed Chemistry For Good
  • Earendel: The Most Distant Star Ever Seen Might Not Be What We Thought
  • Unique White Dwarf Heavier Than The Sun Is Hiding A Merger In Its Past
  • Ancient Crater Lakes Rewrite Saharan Climate History, And Possibly Civilization’s Origins
  • Rare Crystalline Gold Accounts For Just 1 Percent Of The World’s Gold, And It’s Beautiful
  • First-Of-Its-Kind Footage Shows Human Embryo Implantation In Real-Time
  • Meet Splash: The World’s First Search-And-Rescue Otter Hunting For Missing People In Florida
  • New Species Of Early Human Lived Alongside The Oldest Known Homo, We Still Don’t Fully Know What Long COVID Actually Is, And Much More This Week
  • New AI Model May Predict Success Of Future Fusion Experiments, Saving Money And Fuel
  • Orange Crocodiles, New Human Species, And Death By Meteorite
  • The World’s Largest Terrestrial Carnivore Has Clear Fur And Black Skin, But You Wouldn’t Know It
  • Deep-Sea Explorers Found A Sunken Whale Carcass – And Watched A Wild Banquet Unfold
  • Does Jupiter Have A Solid Core, And If So, How Big Is It?
  • Trump’s Executive Order To Slash Environmental Regulations For Space Launches: We Look At The Risks And Realities
  • An Underwater Volcano Off The US Coast Is Set To Erupt in 2025, Raising Excitement And Worry
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version