• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Electron’s Charge Seen Splintering Into Fractions In Graphene For The First Time

February 22, 2024 by Deborah Bloomfield

The elementary charge is a fundamental constant of the universe. We call it simply e. Protons have a value of +e and electrons are -e. Depending on how familiar you are with physics, you might have heard that the quarks that make protons have a fractional charge, but we do not worry about that because they are never by themselves. And electrons don’t have components, so the elementary charge is truly elementary in all material interactions. Well, until it isn’t, as a new study has demonstrated. 

Overwhelmingly across materials and phenomena, the charge of an electron is -e, but some materials experience the fractional quantum Hall effect. In a handful of systems, under very high and carefully tuned magnetic fields, an exotic electronic state develops where its charge is no longer -e.

Advertisement

The new work uses graphene, which is considered a very interesting material. It is a single layer of carbon atoms, but it is incredibly strong and a good conductor. In this experiment, the team stuck five layers of graphene together like steps on a staircase, stamped them between two hexagonal boron nitride layers, and put the hybrid material at extremely low temperatures. The team saw something very weird as they sent electrons through this material.

Electrons passed through it as fractions of the total charge – but there was no external magnetic field. It is therefore the first evidence of the fractional quantum anomalous Hall effect in crystalline graphene, deemed anomalous because it does not have a magnetic field. Researchers were not expecting graphene to be able to do that.

“This five-layer graphene is a material system where many good surprises happen,” study author Long Ju, assistant professor of physics at MIT, said in a statement. “Fractional charge is just so exotic, and now we can realize this effect with a much simpler system and without a magnetic field. That in itself is important for fundamental physics. And it could enable the possibility for a type of quantum computing that is more robust against perturbation.”

This is not the first time that the team witnessed something peculiar in a pentalayer of graphene. They reported last year that it also exhibited a “multiferroic” state. Twisted graphene is also superconductive at a very low temperature – just 1.7 Kelvins above absolute zero. The lab had a new fridge installed just last summer to make these investigations.

Advertisement

“The day we saw it, we didn’t recognize it at first,” said lead author Zhengguang Lu. “Then we started to shout as we realized, this was really big. It was a completely surprising moment.”

“This was probably the first serious samples we put in the new fridge,” added co-first author Tonghang Han. “Once we calmed down, we looked in detail to make sure that what we were seeing was real.”

The group will continue to explore how multilayers of graphene might showcase different and rare electronic states.

“We are diving in to explore many fundamental physics ideas and applications,” Ju added. “We know there will be more to come.”

Advertisement

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Electron's Charge Seen Splintering Into Fractions In Graphene For The First Time

Filed Under: News

Primary Sidebar

  • Skynet-1A: Military Spacecraft Launched 56 Years Ago Has Been Moved By Persons Unknown
  • There’s A Simple Solution To Helping Avoid Erectile Dysfunction (But You’re Not Going To Like It)
  • Interstellar Object 3I/ATLAS May Be 10 Billion Years Old, This Rare Spider Is Half-Female, Half-Male Split Down The Middle, And Much More This Week
  • Why Do Trains Not Have Seatbelts? It’s Probably Not What You Think
  • World’s Driest Hot Desert Just Burst Into A Rare And Fleeting Desert Bloom
  • Theoretical Dark Matter Infernos Could Melt The Earth’s Core, Turning It Liquid
  • North America’s Largest Mammal Once Numbered 60 Million – Then Humans Nearly Drove It To Extinction
  • North America’s Largest Ever Land Animal Was A 21-Meter-Long Titan
  • A Two-Headed Fossil, 50/50 Spider, And World-First Butt Drag
  • Interstellar Comet 3I/ATLAS Is Losing Buckets Of Water Every Second – And It’s Got Cyanide
  • “A Historic Shift”: Renewables Generated More Power Than Coal Globally For First Time
  • The World’s Oldest Known Snake In Captivity Became A Mom At 62 – No Dad Required
  • Biggest Ocean Current On Earth Is Set To Shift, Spelling Huge Changes For Ecosystems
  • Why Are The Continents All Bunched Up On One Side Of The Planet?
  • Why Can’t We Reach Absolute Zero?
  • “We Were Onto Something”: Highest Resolution Radio Arc Shows The Lowest Mass Dark Object Yet
  • How Headsets Made For Cyclists Are Giving Hearing And Hope To Kids With Glue Ear
  • It Was Thought Only One Mammal On Earth Had Iridescent Fur – Turns Out There’s More
  • Knitters, Artists, And Bakers Unite! Creative Hobbies Can Help Your Brain Stay Young
  • The Biggest Millisecond Pulsar Glitch Recorded Represents An Astronomical Mystery
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version