• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Electron’s Charge Seen Splintering Into Fractions In Graphene For The First Time

February 22, 2024 by Deborah Bloomfield

The elementary charge is a fundamental constant of the universe. We call it simply e. Protons have a value of +e and electrons are -e. Depending on how familiar you are with physics, you might have heard that the quarks that make protons have a fractional charge, but we do not worry about that because they are never by themselves. And electrons don’t have components, so the elementary charge is truly elementary in all material interactions. Well, until it isn’t, as a new study has demonstrated. 

Overwhelmingly across materials and phenomena, the charge of an electron is -e, but some materials experience the fractional quantum Hall effect. In a handful of systems, under very high and carefully tuned magnetic fields, an exotic electronic state develops where its charge is no longer -e.

Advertisement

The new work uses graphene, which is considered a very interesting material. It is a single layer of carbon atoms, but it is incredibly strong and a good conductor. In this experiment, the team stuck five layers of graphene together like steps on a staircase, stamped them between two hexagonal boron nitride layers, and put the hybrid material at extremely low temperatures. The team saw something very weird as they sent electrons through this material.

Electrons passed through it as fractions of the total charge – but there was no external magnetic field. It is therefore the first evidence of the fractional quantum anomalous Hall effect in crystalline graphene, deemed anomalous because it does not have a magnetic field. Researchers were not expecting graphene to be able to do that.

“This five-layer graphene is a material system where many good surprises happen,” study author Long Ju, assistant professor of physics at MIT, said in a statement. “Fractional charge is just so exotic, and now we can realize this effect with a much simpler system and without a magnetic field. That in itself is important for fundamental physics. And it could enable the possibility for a type of quantum computing that is more robust against perturbation.”

This is not the first time that the team witnessed something peculiar in a pentalayer of graphene. They reported last year that it also exhibited a “multiferroic” state. Twisted graphene is also superconductive at a very low temperature – just 1.7 Kelvins above absolute zero. The lab had a new fridge installed just last summer to make these investigations.

Advertisement

“The day we saw it, we didn’t recognize it at first,” said lead author Zhengguang Lu. “Then we started to shout as we realized, this was really big. It was a completely surprising moment.”

“This was probably the first serious samples we put in the new fridge,” added co-first author Tonghang Han. “Once we calmed down, we looked in detail to make sure that what we were seeing was real.”

The group will continue to explore how multilayers of graphene might showcase different and rare electronic states.

“We are diving in to explore many fundamental physics ideas and applications,” Ju added. “We know there will be more to come.”

Advertisement

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Paris ramps up security as jihadist attacks trial starts
  2. Cricket-‘Western bloc’ has let Pakistan down, board chief says
  3. Ancient Bison Found In Permafrost Is So Well Preserved Scientists Want To Clone It
  4. Where Inside Us Do We Feel Love?

Source Link: Electron's Charge Seen Splintering Into Fractions In Graphene For The First Time

Filed Under: News

Primary Sidebar

  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Hunting High And Low Helps Four Wild Cat Species Coexist In Guatemala’s Rainforests
  • World’s Oldest Pygmy Hippo, Hannah Shirley, Celebrates 52nd Birthday With “Hungry Hungry Hippos”-Themed Party
  • What Is Lüften? The Age-Old German Tradition That’s Backed By Science
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version