• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Exclusive: We Have Collected The First-Ever Actual Pebbles From An Asteroid

March 1, 2024 by Deborah Bloomfield

Last September, NASA’s OSIRIS-REx brought back to Earth the biggest haul of asteroid material in the history of humanity. And among that, there are the largest physical fragments of an asteroid: pebbles and other small rocks from the surface of asteroid Bennu. By contrast, the Hayabusa probes that collected samples from Itokawa and Ryugu, respectively, brought back only grains from the two space rocks.

OSIRIS-REx managed to collect so much more both in terms of mass and size. The total amount of material is 121.6 grams (4.29 ounces), double the mission goal. Roughly 70.3 grams (2.48 ounces) were accessed very soon after the capsule landed. For the remaining material, a problem with the fasteners of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), meant some delays and creative solutions to get them budging.

Advertisement

“Once we got TAGSAM fully open we saw the glorious 121.6 grams. It’s an interesting number. It’s more than twice what we are required to bring back, but it’s less than half of what I thought we had. It’s exciting because it’s more than we promised, but also a little bit like ‘oh, I thought I had more’,” Professor Dante Lauretta, the principal investigator for OSIRIS-REX, told IFLScience. He then jokingly added: “I try not to be greedy!”



“Huge achievement” is almost an understatement for this endeavor. The collection from Hayabusa-2 of about 5.4 grams (less than 1 ounce) has been already revolutionary, delivering phenomenal discoveries such as the presence of amino acids and water-bearing minerals. Of the accessible 70 grams from Bennu, 1 gram has been distributed to research centers across the US and internationally. From that preliminary analysis alone, 58 presentations with findings will happen at the upcoming Lunar and Planetary Science Conference. And there is much more to come.

“We have stones up to three and a half centimeters [1.4 inches] in their longest dimension, and a lot of stones in the centimeter size range,” Professor Lauretta told IFLScience. “Currently, what we’ve been doing is characterizing those stones. We are doing a lot of work in Houston, in the curation lab, to understand the nature of that material. Those are the rarer parts of the collection and are scientifically really valuable because you get the whole rock texture at a larger scale. And that’s going to be important for the processes that we want to study.”

One of those processes is about the origin of asteroid Bennu itself. The team is extremely excited about the possibility that Bennu might have formed from an ocean world – a much larger body that had liquid water – possibly under an icy or rocky exterior like the icy moons of Jupiter or Saturn. Enceladus is a good example, but this parent body would be half its size, so about 250 kilometers across (155 miles) across.

Advertisement

“We still have work to do to test that hypothesis. I would say there’s really three lines of evidence right now that’s making me think about ocean world,” Professor Lauretta, who is the director of the Arizona Astrobiology Center, told IFLScience.

The first one is evidence of serpentinite, a type of rock that forms when hot igneous or metamorphic rocks meet water. On Earth, that happens at mid-ocean ridges and similar places. 

A second line of evidence is about the bulk composition. Some analyses have shown an abundance of elements soluble in water, such as sodium, potassium, uranium, thorium, and barium. On top of that, the work suggests they were shifted there by a fluid.

The third piece of evidence is the presence of a phosphate crust on some of the samples that have been analyzed. Lauretta describes it as a sort of coating on the rocks and it looks like something that was left behind as water evaporated. The oceans of Enceladus are abundant in phosphates.

Advertisement

“All those three things support the hypothesis. And I do want to emphasize it’s just a hypothesis right now. We’re still coming up with ideas on how to test it. But to me, it’s the leading candidate for the geologic environment that these rocks formed in,” Professor Lauretta told IFLScience.

With barely a few months of analysis, the Bennu sample is already making us giddy with possibilities. It is a window into the early times of the Solar System and will provide new insights into asteroid and planetary formation. And, it might even help us explain how water came to our planet, and maybe about the building blocks of life as well.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. UBS clients raise $650 million for biggest yet biotech impact fund
  4. We’ve Breached Six Of The Nine “Planetary Boundaries” For Sustaining Human Civilization

Source Link: Exclusive: We Have Collected The First-Ever Actual Pebbles From An Asteroid

Filed Under: News

Primary Sidebar

  • Unethical Experiments: When Scientists Really Should Have Stopped What They Were Doing Immediately
  • The First Humans Were Hunted By Leopards And Weren’t The Apex Predators We Thought They Were
  • Earth’s Passage Through The Galaxy Might Be Written In Its Rocks
  • What Is An Einstein Cross – And Why Is The Latest One Such A Unique Find?
  • If We Found Life On Mars, What Would That Mean For The Fermi Paradox And The Great Filter?
  • The Longest Living Mammals Are Giants That Live Up To 200 Years In The Icy Arctic
  • Entirely New Virus Detected In Bat Urine, And It’s Only The 4th Of Its Kind Ever Isolated
  • The First Ever Full Asteroid History: From Its Doomed Discovery To Collecting Its Meteorites
  • World’s Oldest Pachycephalosaur Fossil Pushes Back These Dinosaurs’ Emergence By 15 Million Years
  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Zond 5: In 1968 Two Soviet Steppe Tortoises Beat Humans To Orbiting Around The Moon
  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version