• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Experiment Could Allow Physicists To “See” Gravity For The First Time

September 19, 2024 by Deborah Bloomfield

A team of researchers has proposed an experiment to finally catch a glimpse of the elusive “graviton”, if it does actually exist. 

Advertisement

We can see the effects of gravity pretty easily, just by looking at the movements of the stars and the planets through a telescope. Or if you can’t be bothered to set up said telescope, pushing it over and watching it crash to the ground will suffice.

But seeing the underlying mechanism at play is a little trickier, and has caused physicists no end of headaches for several hundred years. The major problem at the moment is that gravity – unlike the other forces – has escaped quantization. While a fancy word, all this really means is that we can see gravity’s effects in the big, macro world (think stars affecting planets, or large objects affecting other large objects) but not down to the teeny tiny, particle level. 

Other forces, like the weak and strong forces, have associated particles that we know to mediate them. The weak force is mediated by W and Z bosons, while the strong force is mediated by the gluons. Naturally, this has led some physicists to believe that gravity, if it can be quantized, would have its own mediating particle, which has been given the name “the graviton”.

While we have never caught sight of one, physicists do have some constraints on where it might be found. For example, it would likely be massless, given that gravity and gravitational waves propagate at the speed of light (or the speed at which all massless particles must travel, unless you really mess around with them).

While gravitational wave detectors have confirmed the existence of gravitational waves and a lot more beyond that, seeing individual gravitons is a lot trickier.

Advertisement

“This is a foundational experiment that was long thought impossible, but we think we’ve found a way to do it,” Igor Pikovski, physics professor at Stevens Institute of Technology, explained in a statement. The setup of the experiment, while the equipment would need to be extremely sensitive, is surprisingly simple, using an acoustic resonator and energy state-detection methods known as “quantum sensing”.

“Our solution is similar to the photo-electric effect that led Einstein to the quantum theory of light,” Pikovski explains, “just with gravitational waves replacing electromagnetic waves. The key is that energy is exchanged between the material and the waves only in discrete steps – single gravitons are absorbed and emitted.”

In the experiment, a massive cylinder made of aluminum would be cooled to its lowest quantum state. As a gravitational wave passes through it from a large astronomical event, such as the merging of black holes, the cylinder should be distorted by it. By measuring the vibration of the cylinder, the team believes it should be possible to see miniscule changes in energy as gravitons are absorbed.

“By observing these quantum jumps in the material, we can deduce that a graviton was absorbed,” Germain Tobar, a graduate student at Stockholm University involved in the study, added. “We call it the ‘gravito-phononic effect.”

Advertisement

While this is a promising idea for searching for the graviton, unfortunately we are not quite there yet.

“Quantum jumps have been observed in materials recently, but not yet at the masses we need,” Tobar explains. “But technology advances very rapidly, and we have more ideas on how to make it easier.”

Perhaps some day soon we may be able to find, or perhaps rule out or place constraints on, the elusive graviton.

The study is published in Nature Communications.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Cricket-Manchester test likely to be postponed after India COVID-19 case
  2. EU to attend U.S. trade meeting put in doubt by French anger
  3. Soccer-West Ham win again, Leicester and Napoli falter
  4. Was Jesus A Hallucinogenic Mushroom? One Scholar Certainly Thought So

Source Link: Experiment Could Allow Physicists To "See" Gravity For The First Time

Filed Under: News

Primary Sidebar

  • A New Way Of Looking At Einstein’s Equations Could Reveal What Happened Before The Big Bang
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations, NASA Reveals Comet 3I/ATLAS Images From 8 Missions, And Much More This Week
  • The Latest Internet Debate: Is It More Efficient To Walk Around On Massive Stilts?
  • The Trump Administration Wants To Change The Endangered Species Act – Here’s What To Know
  • That Iconic Lion Roar? Turns Out, They Have A Whole Other One That We Never Knew About
  • What Are Gravity Assists And Why Do Spacecraft Use Them So Much?
  • In 2026, Unique Mission Will Try To Save A NASA Telescope Set To Uncontrollably Crash To Earth
  • Blue Origin Just Revealed Its Latest New Glenn Rocket And It’s As Tall As SpaceX’s Starship
  • What Exactly Is The “Man In The Moon”?
  • 45,000 Years Ago, These Neanderthals Cannibalized Women And Children From A Rival Group
  • “Parasocial” Announced As Word Of The Year 2025 – Does It Describe You? And Is It Even Healthy?
  • Why Do Crocodiles Not Eat Capybaras?
  • Not An Artist Impression – JWST’s Latest Image Both Wows And Solves Mystery Of Aging Star System
  • “We Were Genuinely Astonished”: Moss Spores Survive 9 Months In Space Before Successfully Reproducing Back On Earth
  • The US’s Surprisingly Recent Plan To Nuke The Moon In Search Of “Negative Mass”
  • 14,400-Year-Old Paw Prints Are World’s Oldest Evidence Of Humans Living Alongside Domesticated Dogs
  • The Tribe That Has Lived Deep Within The Grand Canyon For Over 1,000 Years
  • Finger Monkeys: The Smallest Monkeys In The World Are Tiny, Chatty, And Adorable
  • Atmospheric River Brings North America’s Driest Place 25 Percent Of Its Yearly Rainfall In A Single Day
  • These Extinct Ice Age Giant Ground Sloths Were Fans Of “Cannonball Fruit”, Something We Still Eat Today
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version