• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Fast Radio Bursts Reveal The Milky Way’s Halo Is Surprisingly Light

March 31, 2023 by Deborah Bloomfield

The halo surrounding the Milky Way contains gas as well as rare stars, but measuring that gas has proven difficult. The interference with short bursts of radio signals from distant galaxies offers astronomers a new solution.

The gas in the Milky Way’s halo is too sparse and hot to measure directly. However, it interferes with radiation reaching us from greater distances. University of Toronto PhD student Amanda Cook and Professor Bryan Gaensler realized that while we still don’t really understand the cause of Fast Radio Bursts (FRBs), their specific features make them perfect for measuring the halo gas. The results have been published in a new study.

Advertisement

Every FRB occurs over a wide range of radio frequencies, but they do not all arrive at once. It’s very unlikely the delay between the low and high frequencies reflects the time they were emitted. We know that electromagnetic radiation, radio waves included, slows down when passing through gas, and that high frequencies are slowed more than low. The thicker the gas, the more the radiation slows down.

Consequently, the gap between different frequencies serves as a measure of the amount of gas the radio waves have traversed. The spread is known as dispersion, or more colloquially, “smearing”.

“Using smearing to study the universe is like using your home heating bill to work out what the weather must have been like over the winter,” Cook said in a statement. “In the same way that your heating bill tells you whether it was a harsh winter or a mild winter – but not what the temperature was like on any individual date – the smearing that we see allows us to infer the total amount of material that the FRB signal has encountered on its journey from the FRB to Earth. It just can’t tell us how that material was distributed along the way.”

Confounding factors mean measurements based on one or two FRBs could be misleading. Cook and Gaensler took advantage of the fact the CHIME wide angle radio telescope has now detected hundreds of FRBs, of which 93 (four of them repeating) suited their needs.

Advertisement

Nevertheless, the pair and their co-authors ran into a problem. The gas the radio waves have passed through is not all in the Milky Way’s halo. Some of it is almost certainly in the galaxy in which the FRB occurred. There is also gas between galaxies, and while this may be much sparser, the distances between galaxies can be so vast the dispersion can add up on a long trip.

Extending Cook’s analogy, it’s like trying to work out how cold a single winter month was from gas bills that lasted much longer. If you can collect enough people’s bills that started and finished on different dates, you might be able to manage it, but you’d need some sophisticated statistical analysis to get there. A further complication is that the halo may not be perfectly spherical.

“It ended up being a lot more difficult than we thought,” Cook said. They benefited, however from one handy anomaly. One repeating FRB appears to be located in a globular cluster off M81, and therefore probably experiences minimal dispersion from its own galactic halo, and hasn’t had to pass through much interstellar material to get her.

The authors can’t reach a firm figure on average galactic halo density, but put the dispersion at 52-111 parsecs per cubic centimeter, the strange units used to measure it. That’s lower than most previous estimates made using other techniques.

Advertisement

Cook and Gaensler can see potential for teasing out the smearing – and therefore the gas density – of the other parts of the FRBs’ journeys, including in between galaxies. 

The study is published open access in The Astrophysical Journal.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. China Evergrande bonds fall sharply on default worries, onshore bond temporarily suspended
  2. FedEx to test Aurora’s self-driving trucks on Dallas-to-Houston route
  3. Iran’s foreign minister says we were not first to cut ties with Saudi
  4. When You Look At Mars And A Giant Bear Stares Back

Source Link: Fast Radio Bursts Reveal The Milky Way's Halo Is Surprisingly Light

Filed Under: News

Primary Sidebar

  • New Human “Mini-Brains” Combine Cells From The Whole Brain – Even The Blood Vessels
  • Aging NASA Spacecraft Could Intercept The Interstellar Comet On The Other Side Of The Sun, Astronomers Suggest
  • The Deepest Complex Ecosystem Ever Discovered Has Been Found 9,000 Meters Below The Sea
  • Drone Footage Shows Synchronized Moves By Killer Whale Pairs Are More Effective Than Hunting Alone
  • For The First Time, A Quantum Computer Has Been Sent Into Space
  • A Vast Ocean Of Water May Be Trapped In The Transition Zone Beneath Our Feet
  • Beneath Antarctica’s Sea Ice, Leopard Seals Sing Nursery Rhymes In Search Of Love
  • Double-Slit Experiment Performed With Single Atoms Shows Einstein Was Wrong
  • Forecasting Tomorrow: How Science Fiction Is Helping Scientists Explore Possible Futures
  • Siberian Mummy’s 2,000-Year-Old Tattoos Reveal The History Of Ancient Art
  • Humans Were Buzzing On Psychoactive Betel Nuts 4,000 Years Ago
  • Megaflash Stretching 892 Kilometers Sets New World Record For Longest Lightning Strike
  • Your Organs Don’t All Age At The Same Rate. One Is Growing Old Much Quicker Than Others
  • IFLScience The Big Questions: How Has The Internet Changed The Way We Use Language?
  • One Of The Most Dangerous Volcanoes Is Home To The World’s Largest Lava Lake
  • What Astrobiology Might Tell Us About What Aliens May Look Like
  • Voyager: An Inside Look At NASA’s Longest-Running Mission With Someone There From The Start
  • Meet Alba: The World’s Only Known Albino Orangutan Still Living In Borneo
  • Yikes! Baby African Social Spiders Filmed Eating Their Moms Start-To-Finish For The First Time
  • Why Is The Great Rift Valley So Important In Our Understanding Of Human Evolution?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version