• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Fast Radio Bursts Reveal The Milky Way’s Halo Is Surprisingly Light

March 31, 2023 by Deborah Bloomfield

The halo surrounding the Milky Way contains gas as well as rare stars, but measuring that gas has proven difficult. The interference with short bursts of radio signals from distant galaxies offers astronomers a new solution.

The gas in the Milky Way’s halo is too sparse and hot to measure directly. However, it interferes with radiation reaching us from greater distances. University of Toronto PhD student Amanda Cook and Professor Bryan Gaensler realized that while we still don’t really understand the cause of Fast Radio Bursts (FRBs), their specific features make them perfect for measuring the halo gas. The results have been published in a new study.

Advertisement

Every FRB occurs over a wide range of radio frequencies, but they do not all arrive at once. It’s very unlikely the delay between the low and high frequencies reflects the time they were emitted. We know that electromagnetic radiation, radio waves included, slows down when passing through gas, and that high frequencies are slowed more than low. The thicker the gas, the more the radiation slows down.

Consequently, the gap between different frequencies serves as a measure of the amount of gas the radio waves have traversed. The spread is known as dispersion, or more colloquially, “smearing”.

“Using smearing to study the universe is like using your home heating bill to work out what the weather must have been like over the winter,” Cook said in a statement. “In the same way that your heating bill tells you whether it was a harsh winter or a mild winter – but not what the temperature was like on any individual date – the smearing that we see allows us to infer the total amount of material that the FRB signal has encountered on its journey from the FRB to Earth. It just can’t tell us how that material was distributed along the way.”

Confounding factors mean measurements based on one or two FRBs could be misleading. Cook and Gaensler took advantage of the fact the CHIME wide angle radio telescope has now detected hundreds of FRBs, of which 93 (four of them repeating) suited their needs.

Advertisement

Nevertheless, the pair and their co-authors ran into a problem. The gas the radio waves have passed through is not all in the Milky Way’s halo. Some of it is almost certainly in the galaxy in which the FRB occurred. There is also gas between galaxies, and while this may be much sparser, the distances between galaxies can be so vast the dispersion can add up on a long trip.

Extending Cook’s analogy, it’s like trying to work out how cold a single winter month was from gas bills that lasted much longer. If you can collect enough people’s bills that started and finished on different dates, you might be able to manage it, but you’d need some sophisticated statistical analysis to get there. A further complication is that the halo may not be perfectly spherical.

“It ended up being a lot more difficult than we thought,” Cook said. They benefited, however from one handy anomaly. One repeating FRB appears to be located in a globular cluster off M81, and therefore probably experiences minimal dispersion from its own galactic halo, and hasn’t had to pass through much interstellar material to get her.

The authors can’t reach a firm figure on average galactic halo density, but put the dispersion at 52-111 parsecs per cubic centimeter, the strange units used to measure it. That’s lower than most previous estimates made using other techniques.

Advertisement

Cook and Gaensler can see potential for teasing out the smearing – and therefore the gas density – of the other parts of the FRBs’ journeys, including in between galaxies. 

The study is published open access in The Astrophysical Journal.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. China Evergrande bonds fall sharply on default worries, onshore bond temporarily suspended
  2. FedEx to test Aurora’s self-driving trucks on Dallas-to-Houston route
  3. Iran’s foreign minister says we were not first to cut ties with Saudi
  4. When You Look At Mars And A Giant Bear Stares Back

Source Link: Fast Radio Bursts Reveal The Milky Way's Halo Is Surprisingly Light

Filed Under: News

Primary Sidebar

  • The Bizarre 1997 Experiment That Made A Frog Levitate
  • There’s A Very Good Reason Why October 1582 On Your Phone Is Missing 10 Days
  • Skynet-1A: Military Spacecraft Launched 56 Years Ago Has Been Moved By Persons Unknown
  • There’s A Simple Solution To Helping Avoid Erectile Dysfunction (But You’re Not Going To Like It)
  • Interstellar Object 3I/ATLAS May Be 10 Billion Years Old, This Rare Spider Is Half-Female, Half-Male Split Down The Middle, And Much More This Week
  • Why Do Trains Not Have Seatbelts? It’s Probably Not What You Think
  • World’s Driest Hot Desert Just Burst Into A Rare And Fleeting Desert Bloom
  • Theoretical Dark Matter Infernos Could Melt The Earth’s Core, Turning It Liquid
  • North America’s Largest Mammal Once Numbered 60 Million – Then Humans Nearly Drove It To Extinction
  • North America’s Largest Ever Land Animal Was A 21-Meter-Long Titan
  • A Two-Headed Fossil, 50/50 Spider, And World-First Butt Drag
  • Interstellar Comet 3I/ATLAS Is Losing Buckets Of Water Every Second – And It’s Got Cyanide
  • “A Historic Shift”: Renewables Generated More Power Than Coal Globally For First Time
  • The World’s Oldest Known Snake In Captivity Became A Mom At 62 – No Dad Required
  • Biggest Ocean Current On Earth Is Set To Shift, Spelling Huge Changes For Ecosystems
  • Why Are The Continents All Bunched Up On One Side Of The Planet?
  • Why Can’t We Reach Absolute Zero?
  • “We Were Onto Something”: Highest Resolution Radio Arc Shows The Lowest Mass Dark Object Yet
  • How Headsets Made For Cyclists Are Giving Hearing And Hope To Kids With Glue Ear
  • It Was Thought Only One Mammal On Earth Had Iridescent Fur – Turns Out There’s More
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version