• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

First Known Observations Of Matter-Antimatter Asymmetry In Special Particle Decay

July 18, 2025 by Deborah Bloomfield

Particles and antiparticles have opposite charges, and they annihilate if they interact, turning into pure energy. In the Big Bang, an equal amount of matter and antimatter formed, but some process must have given matter a boost, leaving just a tiny fraction of antimatter in the cosmos today. The reason for this is not clear, and several experiments are looking for an answer. The LHCb at CERN has just announced some incredible observations, taking us a step closer to it.

Baryons are subatomic particles made of an odd number of quarks. The protons and neutrons that exist at the center of every atom are baryons since they have three quarks. There are also particles called mesons, made of a quark and an antiquark. Since the 1960s, we have known that these particles violate the so-called charge-parity (CP) symmetry. The antimatter counterpart behaves in a different way.

It had long been suspected, with theoretical studies backing this up, that the same would happen for baryons. However, demonstrating that it was the case took a long time. The Large Hadron Collider (LHC) and its dedicated experiment to study the difference between matter and antimatter had to gather a lot of data to finally produce the evidence of CP violation.

“The reason why it took longer to observe CP violation in baryons than in mesons is down to the size of the effect and the available data,” LHCb spokesperson Vincenzo Vagnoni said in a statement. “We needed a machine like the LHC capable of producing a large enough number of beauty baryons and their antimatter counterparts, and we needed an experiment at that machine capable of pinpointing their decay products. It took over 80,000 baryon decays for us to see matter–antimatter asymmetry with this class of particles for the first time.”

The LHCb collaboration saw this baryon decay in a heavier cousin of protons and neutrons called the beauty-lambda baryon Λb. This particle is composed of an up quark and a down quark – just like the other two – but the third quark is a bottom (or beauty) quark. The team compared this particle’s decay to the decay of the anti-beauty-lambda baryon, and found a statistically significant deviation.

The standard model of particle physics has complex predictions, but their precision is not yet at a level that would allow comparison with the observations. Still, the CP violation predicted for all baryons is a fraction of what you’d need to explain the lack of antimatter in the universe. It is possible that the rest comes from physics beyond the standard model.



“The more systems in which we observe CP violations and the more precise the measurements are, the more opportunities we have to test the Standard Model and to look for physics beyond it,” added Vagnoni. “The first ever observation of CP violation in a baryon decay paves the way for further theoretical and experimental investigations of the nature of CP violation, potentially offering new constraints for physics beyond the Standard Model.”

The study is published in the journal Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Russia moves Sukhoi Su-30 fighter jets to Belarus to patrol borders, Minsk says
  2. French senators to visit Taiwan amid soaring China tensions
  3. Thought Unicorns Don’t Exist? Turns Out They Live In A Chinese Cave
  4. Moon’s Magnetic Field Experienced Mysterious Resurgence 2.8 Billion Years Ago Before Disappearing

Source Link: First Known Observations Of Matter-Antimatter Asymmetry In Special Particle Decay

Filed Under: News

Primary Sidebar

  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Interstellar Comet 3I/ATLAS Can Now Be Seen From Earth – Even By Amateur Telescopes!
  • For 25 Years, People Have Been Living Continuously In Space – But What Happens Next?
  • People Are Not Happy After Learning How Horses Sweat
  • World’s First Generational Tobacco Ban Takes Effect For People Born After 2007
  • Why Was The Year 536 CE A Truly Terrible Time To Be Alive?
  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version