• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

First New Heavy Isotope Of Radioactive Uranium Discovered In Over 40 Years

April 18, 2023 by Deborah Bloomfield

Scientists have announced the production of Uranium-241 for the first time, filling a gap in the long list of the heavy metal’s isotopes. At an estimated 40 minutes, the half-life is far too short for any U-241 formed in supernovas or kilonovas to survive. On the other hand, unlike many isotopes with half-lives measured in micro or nanoseconds, this one is long enough to study its properties.

Elements are defined by the number of protons in their nucleus, but (hydrogen aside) also need neutrons there to hold things together. Elements can have varying numbers of neutrons, creating isotopes, distinguished by the number of protons and neutrons combined. Thus all uranium atoms have 92 protons and the new isotope has 149 neutrons, whereas Earth’s natural uranium atoms have 146 or 143.

Advertisement

Some isotopes are stable, never decaying to other elements unless forced by radiation bombardment. Uranium has no stable isotopes, but U-235 and U-238 take so long to decay that a significant portion of those atoms present when the Earth formed survive today, along with tiny amounts of U-233, U-234, and U-236. All the other isotopes of uranium have had to be produced in the lab, and scientists have been slowly discovering which are possible. Now, in a new paper, a team led by Dr Toshitaka Niwase of Japan’s High Energy Accelerator Research Organization has added U-241 to the list.

In 2021, the announcement of U-214’s production meant the arrival of the uranium isotope with the fewest neutrons, and therefore the lightest nucleus. Like most newly discovered isotopes, it survives for only tiny amounts of time. Its half-life (the time it takes for half the atoms in a sample to radioactively decay) is estimated at just 0.0005 seconds, although there is still some uncertainty about this – it could be as much as three times as long.

Uranium-220 remains undiscovered, but with the production of 241, every other isotope up to U-242 has now been made. Of these, the majority have half-lives of less than a second, usually much less, so while U-241’s half-life still needs to be measured, the estimate of 40 minutes puts it among the longer-lived of the 28 known isotopes, although nowhere near U-238’s 4.5 billion years. U-241’s discovery is the first for an isotope at the heavier end of the scale since 1979.

When U-241 decays it releases beta rays, converting one of its abundant supply of neutrons to a proton and forming neptunium-241, which in turn lasts for about 14 minutes before becoming plutonium-241 through the same decay process.

Advertisement

Niwase and co-authors fired uranium-238 and platinum-198 particles together and produced 19 different isotopes of protactinium, uranium, neptunium, and plutonium. Eighteen of these were familiar, but atoms of the U-241 were found in the mix by sorting the products by weight.

It’s unlikely that U-241 will prove to have any practical uses. We already have other ways of making its daughter isotopes, and no one is likely to want to replace the isotopes used in existing applications of uranium with such a radioactive version. Using platinum makes for an expensive production process even before you allow for most of the output being other isotopes. Nevertheless, investigating such a heavy isotope’s behavior could increase our understanding of how neutron-rich atoms behave.

The study is published in Physical Review Letters. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Kroger expects smaller decline in same-store sales on grocery demand
  2. Libya presidency council head plans to hold October conference
  3. Tikehau Capital aims for around 5 billion euros of assets dedicated to tackling climate change
  4. Think Your Country Is Hot On Abortion Rights? Think Again

Source Link: First New Heavy Isotope Of Radioactive Uranium Discovered In Over 40 Years

Filed Under: News

Primary Sidebar

  • Kissing Has Survived The Path Of Evolution For 21 Million Years – Apes And Human Ancestors Were All At It
  • NASA To Share Its New Comet 3I/ATLAS Images In Livestream This Week – Here’s How To Watch
  • Did People Have Bigger Foreheads In The Past? The Grisly Truth Behind Those Old Paintings
  • After Three Years Of Searching, NASA Realized It Recorded Over The Apollo 11 Moon Landing Footage
  • Professor Of Astronomy Explains Why You Can’t Fire Your Enemies Straight Into The Sun
  • Do We All See The Same Blue? Brilliant Quiz Shows The Subjective Nature Of Color Perception
  • Earliest Detailed Observations Of A Star Exploding Show True Shape Of A Supernova
  • Balloon-Mounted Telescope Captures Most Precise Observations Of First Known Black Hole Yet
  • “Dawn Of A New Era”: A US Nuclear Company Becomes First Ever Startup To Achieve Cold Criticality
  • Meet The Kodkod Of The Americas: Shy, Secretive, And Super-Small
  • Incredible Footage May Be First Evidence Wild Wolves Have Figured Out How To Use Tools
  • Raccoons In US Cities Are Evolving To Become More Pet-Like
  • How Does CERN’s Antimatter Factory Work? We Visited To Find Out
  • Elusive Gingko-Toothed Beaked Whale Seen Alive For First Time Ever
  • Candidate Gravitational Wave Detection Hints At First-Of-Its-Kind Incredibly Small Object
  • People Are Just Learning What A Baby Eel Is Called
  • First-Ever Look At Neanderthal Nasal Cavity Shatters Expectations
  • Traces Of Photosynthetic Lifeforms 1 Billion Years Older Than Previous Record-Holder Discovered
  • This 12,000-Year-Old Artwork Shows An “Extraordinary” Moment In History And Human Creativity
  • World’s First Critically Endangered Penguin Directly Competes With Fishing Boats For Food
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version