• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Galaxy’s Extreme Core Might Have A Whole New Source Of Ghostly Particles

May 8, 2025 by Deborah Bloomfield

Messier 77 is a galaxy known to emit a lot of neutrinos, the ghostly particles that can easily pass through a planet. There are other galaxies whose neutrino release can also be detected on Earth, but Messier 77 emission is like no other. Researchers have now got a potential explanation for what’s going on.

The galaxy, also known as NGC 1068 or the Squid Galaxy, is a barred spiral galaxy located 47 million light-years away. Neutrinos are fundamental particles with no electric charge and with a mass so small, we are not exactly sure what it is. They only seldomly interact with matter, that why every second, a constant stream of trillions of neutrinos coming from the Sun passes through your body, without you being aware.

Large detectors such as IceCube in Antarctica can snap the occasional interaction and work out where the neutrinos come from. Since they have no charge, they move in a straight line from their source. Neutrinos from active galaxies are usually generated in the active core, where a supermassive black hole is feeding and creating a powerful jet. In the interaction between protons in hydrogen atoms and light, neutrinos and gamma rays end up being produced.

But the Squid Galaxy is an odd one. The gamma-ray emission is a lot lower compared to the neutrino emission. The team suggests that helium too can be accelerated in the jet of a supermassive black hole, and when those atoms crash into photons, the particles of light, protons and neutrons in the helium atom can be disrupted.

The free neutrons are unstable and they decay, releasing neutrinos without a strong emission of gamma rays like other galaxies. If this is the case, the team might uncover a novel insight into the extreme environments surrounding supermassive black holes.

“Hydrogen and helium are the two most common elements in space,” first author Koichiro Yasuda, from the University of California Los Angeles (UCLA), said in a statement. “But hydrogen only has a proton and if that proton runs into photons, it will produce both neutrinos and strong gamma rays. But neutrons have an additional way of forming neutrinos that doesn’t produce gamma rays. So helium is the most likely origin of the neutrinos we observe from NGC 1068.”

“We don’t know very much about the central, extreme region near the galactic center of NGC1068,” added co-author Professor Alexander Kusenko, from UCLA and a Senior Fellow at Kavli IPMU. “If our scenario is confirmed, it tells us something about the environment near the supermassive black hole at the center of that galaxy.”

This work once again showcases the revolution that is happening in astronomy. With the detection of neutrinos from beyond the solar system as well as the observations of gravitational waves from a variety of sources, we are now in the era of multimessenger astronomy. It is not just light anymore.

“We have telescopes that use light to look at stars, but many of these astrophysical systems also emit neutrinos,” said Kusenko. “To see neutrinos, we need a different type of telescope, and that’s the telescope we have at the South Pole.”

A paper describing this mechanism is published in Physical Review Letters.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Russia moves Sukhoi Su-30 fighter jets to Belarus to patrol borders, Minsk says
  2. Fed likely to open bond-buying ‘taper’ door, but hedge on outlook
  3. French senators to visit Taiwan amid soaring China tensions
  4. Thought Unicorns Don’t Exist? Turns Out They Live In A Chinese Cave

Source Link: Galaxy's Extreme Core Might Have A Whole New Source Of Ghostly Particles

Filed Under: News

Primary Sidebar

  • Humans Have Accidentally Created A Barrier Around The Earth
  • Something Just Crashed Into The Moon, First-Known Instance Of Prehistoric Bees Nesting In Fossil Skulls, And Much More This Week
  • Interstellar Comet 3I/ATLAS Carries The Key Molecules For Life In Unusual Abundance– What Does That Mean?
  • Want Your Career To Take The Next Step? How Scientific Conferences Can Be A Catalyst For Change
  • Why Do Little Birds Always Ride On Rhinos? It’s An Incredibly Deep Relationship
  • The World’s Rarest Great Ape Just Got Even Rarer
  • This Is The First Ever Map Of The Entire Sky In An Incredible 102 Infrared Colors
  • Was Jesus Christ Actually Born On December 25?
  • Is It True There Are Two Places On Earth Where You Can Walk Directly On The Mantle?
  • Around 90 Percent Of People Report Personality Changes After An Organ Transplant – Why?
  • This Worm Quietly Lived In A Lab For Decades, But They Had No Idea Just How Old It Truly Was
  • Fewer Than 50 Of These Carnivorous “Large Mouth” Plants Exist In The World – Will Humans Drive Them To Extinction?
  • These Are The Best Fictional Spaceships, According To Astronauts – What Are Yours?
  • Can I See Comet 3I/ATLAS From Earth During Its Closest Approach Today? Yes, Here’s How
  • The Earliest Winter Solstice Rituals Go All The Way Back To The Stone Age
  • We Were F*&@ing Right – Swearing Is Good For You And Now We Know Why
  • Why Do Wombats Have Square Poop? New Discovery Reveals How Their “Latrines” May Act Like Dating Apps
  • IFLScience The Big Questions: Answering Some Of The Biggest Scientific Mysteries Of 2025
  • Astronomers Catch Incredible First Direct Images Of Objects Colliding In Another Star System
  • Billionaire Jared Isaacman Finally Confirmed As Head Of NASA, As Agency Faces Uncertain Future
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version