• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Giant Sibling Stars Are Not As Similar As We Thought

May 2, 2024 by Deborah Bloomfield

Television dramas often thrive on families where siblings have personalities much more different from each other than people would assume. The same may be true for stars, at least giant ones, and the results could make scientific research on many aspects of astronomy more convoluted than the plot of a long-running series.

Advertisement

Occasionally a star may pass close enough to another to be captured and remain in orbit, but this is very rare. Almost all stars in binary systems, particularly close binaries, are thought to have formed together from the same gas cloud, and therefore started with the same chemical composition. This assumption is used to explore many aspects of stellar evolution. In the last few weeks, for example, it’s apparently helped explain an unusually massive stellar black hole and estimate how many stars swallow their planets. 

Advertisement

Unfortunately, new research suggests it might be wrong.

Carlos Saffe of Argentina’s Institute of Astronomical, Earth and Space Sciences led a team that used the Gemini South telescopes to collect spectra from the pair of giant stars known as HD 138202 + CD−30 12303 (until astronomers come up with something catchier). They found the larger star had significantly more iron – frequently used as a proxy for metals in general – than its smaller sibling.

For older stars, there are easy explanations for this. As a star develops, it becomes more stratified, with elements settling to internal layers so that their spectrum can’t be detected. This can occur at different rates for binary companions, making them appear more different than they are. Stars can also consume nearby planets, whose metal content changes the ratio near the surface, which might happen in one star but not the other.

However, when both stars in a binary are sufficiently massive, these explanations break down. Such stars are very well mixed, and planetary material has only a minor effect on composition near the surface. So it was a surprise to observe such differences in giant stars too well-mixed for either explanation to make sense. Instead, the two stars must have had differing compositions all the way through. 

Advertisement

“This is the first time astronomers have been able to confirm that differences between binary stars begin at the earliest stages of their formation,” Saffe said in a statement. 

It’s always dangerous to draw conclusions from a single example, and perhaps HD 138202 + CD−30 12303 will turn out to be quite atypical for reasons as yet unknown. Notably, the two stars are quite far apart – more than half a light year, or a thousand times the distance from the Sun to Neptune. However, if the pattern is common, there are plenty of implications for astronomy.

For one thing, we won’t be able to assume the starting ingredients of a star by looking at its companion. In the example referenced above, we can’t be so sure the black hole is from a star almost entirely made of primordial elements, even though its companion is. 

We’d also need to determine if star-forming clouds can be that different at nearby locations, or if something can sometimes interfere with the incorporation of metals into one star but not both.

Advertisement



Gas clouds give birth not just to pairs of stars, but clusters of thousands, which gradually drift apart. Recent efforts to identify stars that come from the same cloud have looked for those on similar paths around the galaxy, but also matched ages and compositions. Perhaps the last is not as good an indicator as we thought.

We might also need to rethink ideas of planetary formation. “Different planetary systems could mean very different planets – rocky, Earth-like, ice giants, gas giants – that orbit their host stars at different distances and where the potential to support life might be very different,” said Saffe. That could make for great science fiction – imagine two very different planetary systems orbiting stars so close to each other that travel between them is practical – but current assumptions about where to look for life may need revision.  

Much as this work may make things harder for his colleagues, Saffe is excited. “By showing for the first time that primordial differences really are present and responsible for differences between twin stars, we show that star and planet formation could be more complex than initially thought,” he said. “The Universe loves diversity!”

Advertisement

The study is published open access in the journal Astronomy and Astrophysics.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Events leading up to the trial of Theranos founder Elizabeth Holmes
  2. “Man Of The Hole”: Last Known Member Of Uncontacted Amazon Tribe Has Died
  3. This Is What Cannabis Looks Like Under A Microscope – You Might Be Surprised
  4. Will Lake Mead Go Back To Normal In 2024?

Source Link: Giant Sibling Stars Are Not As Similar As We Thought

Filed Under: News

Primary Sidebar

  • Earliest Evidence Of Making Fire Has Been Discovered, X-Rays Of 3I/ATLAS Reveal Signature Unseen In Other Interstellar Objects, And Much More This Week
  • Could This Weirdly Moving Comet Have Been The Real “Star Of Bethlehem”?
  • How Monogamous Are Humans Vs. Other Mammals? Somewhere Between Beavers And Meerkats, Apparently
  • A 4,900-Year-Old Tree Called Prometheus Was Once The World’s Oldest. Then, A Scientist Cut It Down
  • Descartes Thought The Pineal Gland Was “The Seat Of The Soul” – And Some People Still Do
  • Want To Know What The Last 2 Minutes Before Being Swallowed By A Volcanic Eruption Look Like? Now You Can
  • The Three Norths Are Moving On: A Once-In-A-Lifetime Alignment Shifts This Weekend
  • Spectacular Photo Captures Two Rare Atmospheric Phenomena At The Same Time
  • How America’s Aerospace Defense Came To Track Santa Claus For 70 Years
  • 3200 Phaethon: Parent Body Of Geminids Meteor Shower Is One Of The Strangest Objects We Know Of
  • Does Sleeping On A Problem Actually Help? Yes – It’s Science-Approved
  • Scientists Find A “Unique Group” Of Polar Bears Evolving To Survive The Modern World
  • Politics May Have Just Killed Our Chances To See A Tom Cruise Movie Actually Shot In Space
  • Why Is The Head On Beer Often White, When Beer Itself Isn’t?
  • Fabric Painted With Dye Made From Bacteria Could Protect Astronauts From Radiation On Moon
  • There Used To Be 27 Letters In The English Alphabet, Until One Mysteriously Vanished
  • Why You Need To Stop Chucking That “Liquid Gold” Down Your Kitchen Sink
  • Youngest Mammoth Fossils Ever Found Turn Out To Be Whales… 400 Kilometers From The Coast
  • The First Wheelchair User To Travel To Space Is About To Make History
  • “It Was Bigger Than A Killer Whale”: 66 Million-Year-Old Tooth Suggests Mosasaurs Were Hunting In Rivers, Not Just Seas
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version