• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Gravitational Waves Could Reveal The Moment Time Began

August 24, 2024 by Deborah Bloomfield

The first light free to move through the universe is what we now call the cosmic microwave background, emitted 380,000 years after the Big Bang. Before then, photons – the particles of light – were constantly interacting with matter, so we can’t use light to see what happened back then. But gravitational waves were already moving freely, and physicists have long supposed that one day we might use them to study this mysterious time period. And now a team has got the mathematical tools to use gravitational waves for exactly that endeavor.

Advertisement

The starting point of this work is trying to understand how gravitational waves interact with matter. These waves are going through everything including us, but they squish us or pull by a fraction of the size of an atom. That’s why we need extremely sensitive detectors to measure them. But they still interact with matter, and we can study if and how those interactions are measurable.

“We have some formulas now, but getting meaningful results will take more work,” lead author Deepen Garg, from the Princeton Plasma Physics Laboratory, said in a statement. “We can’t see the early universe directly, but maybe we can see it indirectly if we look at how gravitational waves from that time have affected matter and radiation that we can observe today.”

The starting point for the work is not about gravitational waves at all, but about plasma physics in nuclear fusion reactors. Nuclear fusion is what powers stars and might one day provide us with carbon-free electricity. And it turns out that some of the equations that govern one can be modified to explain the other.  

“We basically put plasma wave machinery to work on a gravitational wave problem,” Garg said.

Gravitational waves are changes in space-time and they are not absorbed by anything. There is nothing in the universe that casts a shadow. But the researchers suggest that the various characters in the universe, from black holes, to neutron star collisions, to planets and stars, will affect these waves. By studying gravitational waves, we can gain insight into the behavior of those celestial bodies and events that we wouldn’t be able to otherwise. And to think, the researchers did not start this project with any grand plan.

Advertisement

“I thought this would be a small, six-month project for a graduate student that would involve solving something simple,” added co-author Ilya Dodin, Garg’s doctoral advisor. “But once we started digging deeper into the topic, we realized that very little was understood about the problem and we could do some very basic theory work here.”

The research was published in the Journal of Cosmology and Astroparticle Physics.

An earlier version of this article was published in January 2023.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Lithuania to fence first 110 km of Belarus border by April
  2. China’s ICBC to restrict some forex and commodities trading
  3. Why Is Earth’s Inner Core Solid When It’s Hotter Than The Sun’s Surface?
  4. Dark Energy May Be Getting Diluted As The Universe Expands

Source Link: Gravitational Waves Could Reveal The Moment Time Began

Filed Under: News

Primary Sidebar

  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version