• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Gray Matter Vs White Matter: What Is In A Brain?

July 13, 2023 by Deborah Bloomfield

If you ever have the chance to look at a human brain outside the protective dome of the skull, you’ll find it looks distinctly… gray. And wet. But mostly gray. This color is almost irrevocably linked with the brain, perhaps most famously by Agatha Christie’s protagonist Hercule Poirot, who talked of his “little gray cells” that helped him solve the most perplexing mysteries. But our fixation on the gray can sometimes lead us to ignore a second type of brain tissue, one that lies just beneath: the white matter. 

Let’s take a closer look at these two types of brain tissue and discover the difference between gray matter and white matter.

Advertisement

A quick anatomy lesson

Here’s a fact that might ruin your day: your brain is floating. Cerebrospinal fluid (CSF) surrounds the brain, forming a protective shock absorber between the delicate organ and the hard bone of the skull. CSF performs other vital functions that keep the brain healthy, so you should be very grateful it’s there – just maybe try not to think about it too much.

The problem is, if you want to remove a brain for the purposes of scientific study, you’re taking it out of this lovely, moist, floaty environment, and a human brain sitting on its own on a table doesn’t have much in the way of structural integrity.

That’s why, for generations, anatomists and medical scientists have turned to chemical fixation methods to preserve and solidify the tissue, meaning it can be sliced and examined, or stored in jars for the purposes of haunting your nightmares.

The below image shows a formaldehyde-fixed human brain, viewed from above. Specifically, what we’re looking at here is the gray matter. The troughs winding across the surface are called sulci, and the corresponding ridges are called gyri. 

top-down view of formalin-fixed human brain

Gray, wrinkly, and surprisingly small. No, we’re not describing your Great Aunt Mildred.

Now, if we slice the brain open, you can see a slightly darker line of demarcation running all around the outside edge. The lighter-colored tissue below that line is the white matter. There’s also a whacking great hole, but we’ll get to that later.

human brain slice

Definitely not a new type of luncheon meat.

Image credit: Dr. Norbert Lange/Shutterstock.com

That’s all well and good. But what’s the actual difference between these two tissues?

What is gray matter?

Gray matter mostly consists of the cell bodies of neurons. This is where you’ll find the nucleus of the cell as well as all the other organelles it needs to function, such as the mitochondria (all together now: the powerhouse of the cell).

While most of the gray matter forms the outermost layer of the organ, as we’ve seen, there are little pockets of it deep within the brain and brain stem, which are called nuclei. We know – two types of nuclei in the space of two paragraphs. Sorry about that.

Advertisement

The outer, gray-matter-heavy layer of the brain is called the cerebral cortex, and it controls many processes that we think of as “higher” brain functions, like complex thought and working memory. The cerebellum, a comparatively small structure just above the brain stem, is also rich in gray matter and is essential for motor control and coordination.

What is white matter? 

These layers of neuronal cell bodies wouldn’t be much use if there was nothing connecting them – that’s where the white matter comes in. 

White matter is made up of scores of axons. You can think of them like cables, and they’re covered with a layer of insulation called the myelin sheath that acts like the protective plastic coating on electrical wires. It’s the myelin itself that appears white, and gives the white matter its name.

microscopy image of myelinated axons

Myelin insulation surrounding axons from rat spinal nerves.

Image credit: Tom Deerinck and Mark Ellisman, National Center for Microscopy and Imaging Research via Flickr (CC BY-NC 2.0)

Depending on their function and location throughout the nervous system, axons can stretch for very long distances – up to a meter (over 3 feet) in the case of the sciatic nerve – but are much finer than a human hair.

Advertisement

Nerve signals that begin in the cell body are transmitted along the axon as an action potential. The signal effectively “jumps” along between tiny gaps in the myelin sheath called the nodes of Ranvier, but it all happens on a super-fast timescale.

What about other cells and tissues?

The brain isn’t only made up of neurons. In fact, scientists are now recognizing that non-neuronal cells, known as glia, could have a more important role in brain health and function than was ever previously thought.

Many glial cells are found within the gray matter. They include microglia, the brain’s very own immune system, and star-shaped astrocytes, the maintainers of a good working environment inside the brain.

Apart from glia, gray matter also contains the brain’s blood vessels, and a few other cell types. White matter contains some glia too, most notably the oligodendrocytes that are responsible for producing the all-important myelin sheath.

Advertisement

If we venture beyond the white matter, right into the deep heart of the brain, we find the ventricles. These are four, fluid-filled spaces (remember the hole in the brain slice?) where the CSF is produced by another type of glial cell, the ependymal cells.

What happens when things go wrong?

For the brain to work properly, you need both the gray and white matter to be playing their own unique parts, but what can happen when things go wrong?

Neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, primarily affect gray matter, causing the gradual loss of neurons in particular brain areas.

brain from a healthy person vs someone with advanced Alzheimer's showing tissue atrophy

This stark comparison shows the realities of tissue loss in severe Alzheimer’s disease.

Image credit: National Institute on Aging, National Institutes of Health via Flickr (public domain)

Multiple sclerosis, on the other hand, is a demyelinating disease – the protective myelin sheath around the axons in white matter is degraded. Depending on the form of the disease, the degradation/repair cycle can happen multiple times over someone’s life, or the myelin can be permanently lost, leading to neuronal death.

Advertisement

The term “white matter disease” refers to a set of conditions in which the blood flow to the white matter is reduced, causing damage to the tissue. This can happen as a normal consequence of aging, but is also a sign of disease affecting the blood vessels, and increases the risk of complications like stroke.

So, there you have it: a whistle-stop tour through these two distinct, but equally important, brain tissues. Next time you set your “little gray cells” to solving a difficult problem, just remember – those gray cells wouldn’t get very far without the white matter that brings them together.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Magnitude 7.0 quake strikes Mexico, no reports of serious damage
  2. Athletics-Bromell sets world-leading time in 100m after Tokyo disappointment
  3. Analysis: Energy costs add to emerging central banks’ inflation headache
  4. Generation Alpha: What’s In Store For The World’s Incoming Cohort Of Humans?

Source Link: Gray Matter Vs White Matter: What Is In A Brain?

Filed Under: News

Primary Sidebar

  • Why Do I Keep Zapping My Cat? The Strange Science Of Cats And Static Electricity
  • A Giant Volcano Off The Coast Of Oregon Is Scheduled To Erupt In 2026, JWST Finds The Best Evidence Yet Of A Lava World With A Thick Atmosphere, And Much More This Week
  • The UK’s Tallest Bird Faced Extinction In The 16th Century. Now, It’s Making A Comeback
  • Groundbreaking Discovery Of Two MS Subtypes Could Lead To New Targeted Treatments
  • “We Were So Lucky To Be Able To See This”: 140-Year Mystery Of How The World’s Largest Sea Spider Makes Babies Solved
  • China To Start New Hypergravity Centrifuge To Compress Space-Time – How Does It Work?
  • These Might Be The First Ever Underwater Photos Of A Ross Seal, And They’re Delightful
  • Mysterious 7-Million-Year-Old Ape May Be Earliest Hominin To Walk On Two Feet
  • This Spider-Like Creature Was Walking Around With A Tail 100 Million Years Ago
  • How Do GLP-1 Agonists Like Ozempic and Wegovy Work?
  • Evolution In Action: These Rare Bears Have Adapted To Be Friendlier And Less Aggressive
  • Nearly 100 Years After Debating Bohr On Quantum Mechanics, New Experiment Proves Einstein Wrong – Again
  • 9,500-Year-Old Headless Skeleton Is New World’s Oldest Known Cremated Adult
  • World’s Longest Jellyfish Can Reach A Whopping 36 Meters, Even Bigger Than A Blue Whale
  • In 1994, December 31 Was Wiped From Existence In Kiribati
  • A Giant Volcano Off The Coast Of Oregon Failed To Erupt On Time. Its New Schedule: 2026
  • Here Are 5 Ways In Which Cancer Treatment Advanced In 2025
  • The First Marine Mammal Driven To Extinction By Humans Disappeared Only 27 Years After Being Discovered
  • The Planet’s Oldest Bee Species Has Become The World’s First Insect To Be Granted Legal Rights
  • Facial Disfiguration: Why Has The Face Been The Target Of Punishment Across Time?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2026 · Medical Market Report. All Rights Reserved.

Go to mobile version