• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Head-On Aurora-Causing Solar Storms Are The Ones We Really Need To Worry About

July 12, 2024 by Deborah Bloomfield

The risk of a solar storm destroying power networks and submarine cables – and potentially even bringing down civilization – depends on the angle at which it hits the Earth’s magnetic field and the local time of night. Unsurprisingly, the strength of the incoming shock is also important, but new research emphasizes the influence of the angle at which an irregularity in the solar wind arrives. The work will improve predictions on which shocks will be most dangerous, allowing for mitigation measures to be put in place.

Advertisement

With the Sun at around the maximum of its cycle, the main effect most people have experienced has been beautiful auroras. A few radio communications have been disrupted, without substantial harm. However, the history of past events shows something much more serious is possible, and our technology makes us far more vulnerable than ever before.

Although auroras are ultimately a product of coronal mass ejections (CMEs) lifting plasma off the Sun, most CMEs cause no auroras, let alone damage. That’s because the vast majority of CMEs are directed nowhere near Earth – it’s a big Solar System out there and we are quite a small target. When something does hit the Earth’s magnetic field, most often it is at a substantial enough angle to produce a glancing blow, rather than a direct hit. This diminishes the power of the auroras, but since negative effects are rarer, we know less about how they are affected.

The reason CMEs have recently become a much greater threat is that they can produce currents in long stretches of conducting material. That didn’t matter when a spear was the longest piece of metal around, but modern electricity powerlines and pipelines are a different matter. 

“Auroras and geomagnetically induced currents are caused by similar space weather drivers,” said Dr Denny Oliveira of NASA’s Goddard Space Flight Center in a statement to Frontiers News. “The aurora is a visual warning that indicates that electric currents in space can generate these geomagnetically induced currents on the ground.”

Most auroras are restricted to polar regions, but in May this year they were seen at latitudes of less than 30 degrees. Induced currents are also most common near the magnetic poles.

Even somewhere as far from the poles as Perth, Australia, got magnificent auroras in May.

Even somewhere as far from the poles as Perth, Australia, got magnificent auroras in May.

Auroras are famously produced when particles from the Sun reach the Earth’s magnetic field, which bends their path towards the magnetic poles where they ionize atmospheric molecules. However, a secondary mechanism is squeezing of our magnetic field from so called “interplanetary shocks” caused by changes in density and temperature of the solar wind. It’s the latter component that produces the ground currents.

“Arguably, the most intense deleterious effects on power infrastructure occurred in March 1989 following a severe geomagnetic storm – the Hydro-Quebec system in Canada was shut down for nearly nine hours, leaving millions of people with no electricity,” Oliveira said.

Oliveira and colleagues compared the angles and times of day of 332 shocks striking between 1999 and 2023 with the currents induced in a gas pipeline in Mäntsälä, Finland. 

The strongest currents (above 20 amps) were created when shocks struck most directly and around midnight when the magnetic north pole was between Mäntsälä and the Sun. Unsurprisingly, these coincided with strong auroras, but at this latitude auroras are far more frequent.

Advertisement

“Moderate currents occur shortly after the perturbation impact when Mäntsälä is around dusk local time, whereas more intense currents occur around midnight local time,” Oliveira said.

Shocks take days to travel from Sun to Earth, but we are unable to predict their arrival with much precision for most of that time, a matter of great frustration to aurora chasers. 

However, according to Oliveira, the shock angle is sufficiently well-known two hours beforehand. That’s a lot more useful than the half an hour warning NASA has recently started providing. 

Advertisement

Nevertheless, the data Oliveira and colleagues used didn’t reveal a strong relationship between the shock angle and the delay before the current was produced. Unless other methods can address this, infrastructure may need to remain in safe mode longer than would be ideal following each shock.

“Although Mäntsälä is at a critical location, it does not provide a worldwide picture. In addition, the Mäntsälä data is missing several days in the period investigated, which forced us to discard many events in our shock database. It would be nice to have worldwide power companies make their data accessible to scientists for studies,” Oliveira noted. This team might not be the first to discover that those concerned enough about the public good to share proprietary information seldom go into the fossil fuel business.

The study is published open access in Frontiers in Astronomy and Space Sciences. 

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. ‘Incredible fear’ among women across Afghanistan -U.N. official
  2. Stocks find fleeting relief in Evergrande deal; Fed looms
  3. Brokerage Robinhood introduces 24/7 phone support after communications criticisms
  4. Flowery Funerals? The Controversial Neanderthal Found In An Iraqi Cave

Source Link: Head-On Aurora-Causing Solar Storms Are The Ones We Really Need To Worry About

Filed Under: News

Primary Sidebar

  • The Hole In The Ozone Layer Is Healing And On Track For Full Recovery In The 21st Century, Thanks To Science
  • First Sweet Potato Genome Reveals They’re Hybrids With A Puzzling Past And 6 Sets Of Chromosomes
  • Why Is The Top Of Canada So Sparsely Populated? Meet The “Canadian Shield”
  • Humans Are In The Middle Of “A Great Evolutionary Transition”, New Paper Claims
  • Why Do Some Toilets Have Two Flush Buttons?
  • 130-Year-Old Butter Additive Discovered In Danish Basement Contains Bacteria From The 1890s
  • Prehistoric Humans Made Necklaces From Marine Mollusk Fossils 20,000 Years Ago
  • Zond 5: In 1968 Two Soviet Steppe Tortoises Beat Humans To Orbiting Around The Moon
  • Why Cats Adapted This Defense Mechanism From Snakes
  • Mother Orca Seen Carrying Dead Calf Once Again On Washington Coast
  • A Busy Spider Season Is Brewing: Why This Fall Could See A Boom Of Arachnid Activity
  • What Alternatives Are There To The Big Bang Model?
  • Magnetic Flip Seen Around First Photographed Black Hole Pushes “Models To The Limit”
  • Something Out Of Nothing: New Approach Mimics Matter Creation Using Superfluid Helium
  • Surströmming: Why Sweden’s Stinky Fermented Fish Smells So Bad (But People Still Eat It)
  • First-Ever Recording Of Black Hole Recoil Captured During Merger – And You Can Listen To It
  • The Moon Is Moving Away From Earth At A Rate Of About 3.8 Centimeters Per Year. Will It Ever Drift Apart?
  • As Solar Storm Hits Earth NASA Finds “The Sun Is Slowly Waking Up”
  • Plate Tectonics And CO2 On Planets Suggest Alien Civilizations “Are Probably Pretty Rare”
  • How To Watch The “Awkward” Partial Solar Eclipse This Weekend
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version