• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Are Large Parts Of The Great Wall Of China Held Together? By “Biocrusts”

December 9, 2023 by Deborah Bloomfield

The Great Wall of China might’ve been able to hold off ancient enemies, but time and weather eventually come for even the sturdiest of constructions. With up to 30 percent of the Ming-era wall disappearing over the last 500 years, some have put this down to the cyanobacteria, lichen, and moss residing within the wall. New research, however, has suggested that these “biocrusts” are actually helping to keep the Great Wall together.

When the Ming region of the wall was constructed between 1368 and 1644, with its characteristic tall brick walls and fortifications, workers often used rammed earth – soil, gravel, and other natural materials – as a building material. In some places, this has fostered a “living” part of the wall, allowing for the growth of cyanobacteria, mosses, and lichens that researchers believe lend stability to the wall as a biocrust.

Advertisement

To reach this conclusion, researchers began by taking samples from eight sections of the Ming-era portion of the wall and found that 67 percent contained biocrusts. They then compared the mechanical strength and soil stability of the biocrust samples versus those that were only plain rammed earth.

Researcher Yousong Cao sampling at the Great Wall

Researcher Yousong Cao taking a sample at the Great Wall.

Image credit: Bo Xiao

The results revealed that the biocrusts lent an impressive stability to the wall. As the team wrote in their paper: “Compared with bare rammed earth, the biocrust-covered sections exhibited reduced porosity, water-holding capacity, erodibility, and salinity by 2 to 48%, while increasing compressive strength, penetration resistance, shear strength, and aggregate stability by 37 to 321%.”

This did, however, depend on the composition of the biocrust and the climate in the region where the samples were taken. In arid regions, for example, cyanobacteria were the dominant party in biocrusts, whereas mosses tended to thrive the most in wetter, semi-arid environments. The researchers found it was the moss-dominated crusts that most significantly enhanced the wall’s strength and stability, reducing its erodibility.

Close-up view of biocrusts on the Great Wall of China

A close-up view of biocrusts on the Great Wall.

Image credit: Bo Xiao

It’s thought that biocrusts do this by secreting substances that bind with the rammed earth, forming a structure akin to cement. The hardened product of this process helps to buffer the effects of the climate, such as wind, rain, and temperature changes.

Advertisement

“Biocrusts serve as stabilizers, consolidators, sacrificial layers, and drainage roofs, combining the protective functions of several conventional measures into one eco-friendly approach,” the authors conclude.

While biocrusts might protect the Great Wall from the weather, there’s little they can do when it comes to stopping humans. Back in September, construction workers looking for a shortcut damaged a portion of the wall in Shanxi province beyond repair.

The study is published in Science Advances.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Helsinki’s Maki.vc poised to close fund at €100M, key focus will be sustainability, deeptech
  2. Burro raises $10.9M for autonomous produce field transport
  3. Austria’s ruling coalition soldiers on after fight to near-death
  4. How Much Heat Can A Human Take? Scientists Crack The Critical Limit

Source Link: How Are Large Parts Of The Great Wall Of China Held Together? By "Biocrusts"

Filed Under: News

Primary Sidebar

  • What Happens If Someone Actually Finds The Loch Ness Monster?
  • Golden Comet C/2025 K1 (ATLAS) Is A Chemical Rarity – And It Should Have Been Destroyed!
  • Bat Species Not Seen In 55 Years Rediscovered And Filmed For First Time – Just Look At Those Ears
  • At Last, We May Finally Have A Way To Tell Female Dinosaurs From Males
  • Giraffes In North American Zoos Have Been Hybridizing – And That’s A Problem
  • Watch: Cosmic Fireworks As Comet Fragment Traveling Over 80,000 Kilometers Per Hour Explodes In The Air
  • Why Don’t Birds Die When They Sit On 400,000-Volt Power Lines?
  • On November 13, 2026, Voyager Will Reach One Full Light-Day Away From Earth
  • Why Don’t We Ride Zebras?
  • Interstellar Object 3I/ATLAS Changed Color Again, And Shows Signs Of Non-Gravitational Acceleration
  • Record-Breaking Brightest Black Hole Flare Shines With The Light Of 10 Trillion Suns
  • The Feared Post-COVID “Disease Rebound” Of Rampaging Infections Never Really Happened
  • Why Do More People Believe Aliens Have Visited Earth?
  • This Antarctic Glacier Just Broke An Unwanted Record – Fastest Retreat In Modern History
  • New Portuguese Man O’ War Species Discovered After Warming Ocean Currents Push It North
  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version