• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Big Can Solar Flares Get And How Far Do They Travel?

August 16, 2024 by Deborah Bloomfield

As the Sun spits out more and bigger storms, videos of flares emerging from its surface help us see its power. Watching these, it usually looks like they peter out a few solar diameters away, but the truth is very different. Although the particles that accompany smaller flares can fall back as the powerful solar gravity overcomes the speed with which they are moving, some flares can travel far beyond the Earth and even the outer planets.

Advertisement

Solar flares are localized bursts of radiation produced when energy trapped by twisted magnetic fields gets released suddenly. This accelerates charged particles from the Sun’s plasma.

How far can solar flares travel?

As powerful as the Sun’s gravitational field is, flares can provide so much energy that particles within them can start with velocities a large fraction of the speed of light. A combination of the Sun’s gravity and encounters with the thin material in the not-quite vacuum of space slow these particles down, but cannot stop them. Consequently, flares can travel all the way to the heliopause, the boundary where the solar wind expires, finally lacking the strength to push aside the interstellar medium.

The heliopause, as we learned recently, is far from spherical. So, to answer the second question first, solar flares can travel substantially different distances depending on which direction they are fired in. We haven’t fully mapped the boundaries of the heliopause, but we know it’s about 100-120 Astronomical Units (Earth-Sun distances) at minimum.

Some flares, which happen to be fired off in just the right direction, can probably reach distances of 350 AU or more. A powerful enough flare might even push the boundary out a little further for a while, like a rhinoceros running into a rubber wall.

On the other hand, a few flares will run into the magnetic field around the Earth or another planet that has one, and be stopped a great deal earlier.

Advertisement

In fact, the most obvious part of a flare is the light it emits, and that will travel forever, unless it runs into something. We can see flares from other stars, indicating that in one sense the flare has crossed many light years to reach us. The Sun’s flares are not as big as those of many other stars, but that could still be seen from hundreds of light years away with the right telescope.

Flares may fade in brightness so that we can’t see them long before they reach such distances but that doesn’t mean they aren’t still going.

How big can solar flares get?

If, when asking about a flare’s size, you mean the question literally, then multiply the length, as described above, by the area of the flare. This area varies of course, and can be hard to measure, but flares can leap from areas on the Sun’s surface many times larger than the Earth, and they don’t get smaller as they travel.

References to flares being big, however, are usually about their power. The most powerful flare to be precisely measured was in 2001. This was an X28.6 using the scale on which flares are measured, meaning it carried 2.9 x 10-3 Watts per square meter. That might not sound like much, but spread over an area far larger than the Earth, it sums to an astonishing amount of power.

Advertisement

However, two years later another flare saturated the detectors on the Geostationary Operational Environmental Satellite. It has been estimated to have been an X40 or 45.

But, we know flares can get much larger than this. The Carrington Event in the 19th Century occurred well before we had the capacity to measure flares’ power. However, the effects it triggered, including electrocuting telegraph operators, make clear that this was on a much larger scale than anything we have seen in the space age.

Radiation bursts captured in tree rings may indicate flares orders of magnitude larger still, although this interpretation is disputed.

Advertisement

Either way, it looks as though to find out how powerful flares can get, we can only wait and see.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Wall St extends gains following Fed statement
  2. Welcome To Deal Days Where You Get Microsoft Office Professional For Only $35.99
  3. Who Exactly Owns Neil Armstrong’s Moon Poop? And Why Is It So Important We Get It Back?
  4. Shortly Before His Death, Carl Sagan Left A Message For The First Humans On Mars

Source Link: How Big Can Solar Flares Get And How Far Do They Travel?

Filed Under: News

Primary Sidebar

  • How Eratos­thenes Measured The Earth’s Circumference With A Stick In 240 BCE, At An Astonishing 38,624 Kilometers
  • Is The Perfect Pebble The Key To A Prosperous Penguin Partnership?
  • Krampusnacht: What’s Up With The Terrifying Christmas-Time Pagan Parades In Europe?
  • Why Does The President Pardon A Turkey For Thanksgiving?
  • In 1954, Soviet Scientist Vladimir Demikhov Performed “The Most Controversial Experimental Operation Of The 20th Century”
  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version