• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Did We Actually Take A Picture Of A Black Hole?

September 13, 2023 by Deborah Bloomfield

Four years ago, the first image of the supermassive black hole (SMBH) at the heart of the Messier 87 galaxy (M87) proved the Internet could be broken by something other than a celebrity’s thirst trap. The excitement was followed up last year by the imaging of the much smaller, but still unimaginably vast, SMBH in our own galaxy, Sagittarius A*. The work continues, with the original data processed by AI this year to make the image much sharper. More examples are coming, so perhaps now is a good time to consider how it is done.

The first thing to note is that none of these images are actually of a black hole. The defining feature of a black hole is gravity so intense even light cannot escape. Consequently, we can’t actually see them no matter what instruments are used. However, black holes, particularly SMBHs, are often surrounded by accretion disks radiating just outside their event horizons, the point of no return. These can be very bright, and if the orientation is right, the hole itself stands out against them.

Advertisement

Despite this brightness, SMBHs’ accretion disks aren’t easy to see. There’s a reason (actually quite a few) why these images required some of the largest collaborations in the history of astronomy, if not quite up with the study of the first kilonova. 

For one thing, M87* (the asterisk differentiates the SMBH from its galaxy) is a very long way away. Fifty-four million light-years to be as precise as we can currently be. Although the accretion disk is vast by the standards of our solar system – a few light days across – it’s still very hard to resolve at that distance. Sagittarius A* is 2,000 times closer, but there is a lot of dust and other stars blocking our view.

In order to get some resolution out of something that far away, it would be ideal to have an immensely large telescope – say one the size of the Earth. That would be a tad pricey, even if no one mistook it for a death star and bombed its garbage chute. 

Instead, astronomers got eight radio telescopes scattered across the planet to work together in what they called The Event Horizon Telescope (EHT). Just as the distance between your eyes allows you extra depth perception, the separation between these telescopes provides a baseline that makes higher resolution possible.

Advertisement

Your brain has a few hundred million years of evolution behind it when it comes to adding the images produced by both eyes together. Telescopes do the equivalent through interferometry, which relies on the way peaks and troughs of electromagnetic waves affect each other, creating an intensity pattern based on the differences in phase between the waves. It was pioneered with instruments like the Very Large Array, which uses 27 antennae on rails in the New Mexico desert. The radio waves each dish collects get brought together so precisely their peaks combine to produce detail far beyond the capacity of each one individually.

Today, very-long-baseline interferometry allows us to combine telescopes half a world apart. It takes a phenomenal computing power to produce images from such distant sources, but as that has become more available, astronomers have been able to perform this feat from more widely separated locations. 

In the case of the EHT, that meant instruments in Hawaii, California, Arizona, Mexico, Chile, Greenland, Spain, and France. Radio telescopes aren’t as susceptible to clouds as optical instruments are, but storms or even high winds can certainly interfere. Since the observations needed to be performed simultaneously, the project had to wait for calm conditions at every site at once.

Interferometry allows us to create images of objects that would otherwise be too small from our perspective to see, but it's a complex process

Interferometry allows us to create images of objects that would otherwise be too small from our perspective to see, but it’s a complex process.

Image Credit: National Radio Astronomy Observatory (CC BY 3.0)

Transmission of the data between the telescopes would have far exceeded the capacity of intercontinental transmission networks, so the data was stored on sets of hard drives, which had to be brought together in one place. Each observation was timestamped to the nanosecond by atomic clocks. When merged, allowance was made for the time it took for the radio waves to reach different instruments traveling at the speed of light.

Advertisement

Even with all this observational capacity, astronomers couldn’t simply combine the radio waves the telescopes collected and convert them into an image accessible to our eyes. The raw product was simply too unclear for that. 

Interference, created by everything from our atmosphere to the outskirts of M87*’s galactic center had to be identified and removed. Even differences in atmospheric pressure between the different sites at the time of observation had to be allowed for. This process was even harder when repeating the process with Sagittarius A*, since there is so much more intervening material.

Finally, the EHT team compared the observations with computer models built on decades of trying to understand how black holes warp the space around them and the expected behavior of material in the accretion disk. This relied on what we know, or think we know, about the way matter that hot behaves under a combination of powerful gravitational and magnetic fields.

This level of uncertainty is why AI could make the same image so much clearer after learning from 30,000 simulated images of event horizons to find common patterns.

Advertisement

The same interferometry approach has allowed astronomers to turn the same telescopes back to M87* and reveal the jets produced as the SMBH feeds on dismembered stars.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Canadian PM Trudeau not sorry for snapping at protester who insulted his wife
  2. After government pledge of ‘best summer ever,’ COVID swamps Alberta hospitals, premier
  3. U.N. urges nations to spend more on species protection as new pact talks begin
  4. People Are Just Now Learning The Purpose Of The Pinky Toe

Source Link: How Did We Actually Take A Picture Of A Black Hole?

Filed Under: News

Primary Sidebar

  • This Antarctic Glacier Just Broke An Unwanted Record – Fastest Retreat In Modern History
  • New Portuguese Man O’ War Species Discovered After Warming Ocean Currents Push It North
  • Watch Orcas Use “Tonic Immobility” To Suck An Enormous Liver Out Of The World’s Deadliest Shark
  • Ancient Micronesians Hunted Sharks 1,800 Years Ago, And Now We Know Which Species
  • World’s First Plasma “Fireballs” Help Explain Supermassive Black Hole Mystery
  • Why Do We Eat Chicken, And Not Birds Like Seagull And Swan?
  • How To Find Fossils? These Bright Orange Organisms Love Growing On Exposed Dinosaur Bones
  • Strange Patterns In Ancient Rocks Reveal Earth’s Tumbling Magnetic Field, Not Speeding Continents
  • Interstellar Comet 3I/ATLAS Can Now Be Seen From Earth – Even By Amateur Telescopes!
  • For 25 Years, People Have Been Living Continuously In Space – But What Happens Next?
  • People Are Not Happy After Learning How Horses Sweat
  • World’s First Generational Tobacco Ban Takes Effect For People Born After 2007
  • Why Was The Year 536 CE A Truly Terrible Time To Be Alive?
  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version