• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Do Straws Work, And Why Don’t They Work As Well At High Altitudes?

January 17, 2025 by Deborah Bloomfield

There are concepts in physics that you probably shouldn’t claim to know until you’ve studied them in depth. Don’t believe us? Tell a physicist you understand quantum mechanics after watching a video about Schrödinger’s cat on YouTube.

Advertisement

But straws, surely, aren’t that difficult to understand? Suck on one end, liquid comes out? Well, it’s a little more complicated than you might imagine. For instance, you may not know that straws are more difficult to use at higher altitudes, and impossible to use in the vacuum of space.

Advertisement

The first thing to know is that you are not really sucking the drink up the straw. Or more accurately, you are, but suction is really the result of pressure differences causing liquids, gases, and solids to flow from one area to another.

When you put your mouth around a straw, desperate to slurp up, for example, Um Bongo, you seal off the outside world, creating a pipe from your mouth to that sweet, sweet Um Bongo. Next, you need to lower the pressure inside your mouth by increasing the volume inside of it. You do this without thinking, of course, by lowering your tongue or pulling it further towards the back of your mouth. 

This creates a pressure gradient between the inside of your mouth and the outside world, with the inside of your mouth having the lower pressure. Outside of your mouth, the atmosphere presses down on your drink. At sea level, the atmospheric pressure is around 101 kilopascals (14.7 pounds per square inch), and this pressure pushes down on your drink. With the pressure lower inside the straw, the liquid is pushed up into it and into your low-pressure mouth.



Advertisement

Since straws rely on atmospheric pressure, they work less well at high altitudes. There is less pressure pushing down on your drink, and so less force pushing the drink up into your mouth.

Though in space you would have bigger worries on your mind than having a slurp of Um Bongo, it also means that straws will not work in a vacuum; there is simply no pressure exerted on your drink in order to push the liquid into your mouth.

It also means there is a limit to how high you can pull liquid up through a straw, with that limit being around 9 meters (30 feet) at sea level.



Advertisement

Go above that limit and, as shown in the video above, the pressure difference needed to draw water further up the straw will be lower than the vapor pressure of water, and so the water will begin to boil.

In short; straws are more complicated than you think, and suction, like the centrifugal force, is not a real force.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Dinosaur Prints Found Under Restaurant Table Confirmed As 100 Million Years Old
  3. Archax: Japanese Engineers Make Transformer Robot That Actually Works
  4. How Do We Know There Is Anything Beyond The Observable Universe?

Source Link: How Do Straws Work, And Why Don't They Work As Well At High Altitudes?

Filed Under: News

Primary Sidebar

  • Inside The Myth Of The 15-Meter Congo Snake, Cryptozoology’s Most Outlandish Claim
  • NASA’s Voyager Spacecraft Found A 30,000-50,000 Kelvin “Wall” At The Edge Of Our Solar System
  • “Dueling Dinosaurs” Fossil Confirms Nanotyrannus As Own Species, Interstellar Comet 3I/ATLAS Is Back From Behind The Sun, And Much More This Week
  • This Is What Antarctica Would Look Like If All Its Ice Disappeared
  • Bacteria That Can Come Back From The Dead May Have Gone To Space: “They Are Playing Hide And Seek”
  • Earth’s Apex Predators: Meet The Animals That (Almost) Can’t Be Killed
  • What Looks And Smells Like Bird Poop? These Stinky Little Spiders That Don’t Want To Be Snacks
  • In 2020, A Bald Eagle Murder Mystery Led Wildlife Biologists To A Very Unexpected Culprit
  • Jupiter-Bound Mission To Study Interstellar Comet 3I/ATLAS From Deep Space This Weekend
  • The Zombie Worms Are Disappearing And It’s Not A Good Thing
  • Think Before You Toss: Do Not Dump Your Pumpkins In The Woods After Halloween
  • A Nearby Galaxy Has A Dark Secret, But Is It An Oversized Black Hole Or Excess Dark Matter?
  • Newly Spotted Vaquita Babies Offer Glimmer Of Hope For World’s Rarest Marine Mammal
  • Do Bees Really “Explode” When They Mate? Yes, Yes They Do
  • How Do We Brush A Hippo’s Teeth?
  • Searching For Nessie: IFLScience Takes On Cryptozoology
  • Your Halloween Pumpkin Could Be Concealing Toxic Chemicals – And Now We Know Why
  • The Aztec Origins Of The Day Of The Dead (And The Celtic Roots Of Halloween)
  • Large, Bright, And Gold: Get Ready For The Biggest Supermoon Of The Year
  • For Just Two Days A Year, These Male Toads Turn A Jazzy Bright Yellow. Now We Know Why
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version