• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Do Straws Work, And Why Don’t They Work As Well At High Altitudes?

January 17, 2025 by Deborah Bloomfield

There are concepts in physics that you probably shouldn’t claim to know until you’ve studied them in depth. Don’t believe us? Tell a physicist you understand quantum mechanics after watching a video about Schrödinger’s cat on YouTube.

Advertisement

But straws, surely, aren’t that difficult to understand? Suck on one end, liquid comes out? Well, it’s a little more complicated than you might imagine. For instance, you may not know that straws are more difficult to use at higher altitudes, and impossible to use in the vacuum of space.

Advertisement

The first thing to know is that you are not really sucking the drink up the straw. Or more accurately, you are, but suction is really the result of pressure differences causing liquids, gases, and solids to flow from one area to another.

When you put your mouth around a straw, desperate to slurp up, for example, Um Bongo, you seal off the outside world, creating a pipe from your mouth to that sweet, sweet Um Bongo. Next, you need to lower the pressure inside your mouth by increasing the volume inside of it. You do this without thinking, of course, by lowering your tongue or pulling it further towards the back of your mouth. 

This creates a pressure gradient between the inside of your mouth and the outside world, with the inside of your mouth having the lower pressure. Outside of your mouth, the atmosphere presses down on your drink. At sea level, the atmospheric pressure is around 101 kilopascals (14.7 pounds per square inch), and this pressure pushes down on your drink. With the pressure lower inside the straw, the liquid is pushed up into it and into your low-pressure mouth.



Advertisement

Since straws rely on atmospheric pressure, they work less well at high altitudes. There is less pressure pushing down on your drink, and so less force pushing the drink up into your mouth.

Though in space you would have bigger worries on your mind than having a slurp of Um Bongo, it also means that straws will not work in a vacuum; there is simply no pressure exerted on your drink in order to push the liquid into your mouth.

It also means there is a limit to how high you can pull liquid up through a straw, with that limit being around 9 meters (30 feet) at sea level.



Advertisement

Go above that limit and, as shown in the video above, the pressure difference needed to draw water further up the straw will be lower than the vapor pressure of water, and so the water will begin to boil.

In short; straws are more complicated than you think, and suction, like the centrifugal force, is not a real force.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Audi launches its newest EV, the 2022 Q4 e-tron SUV
  2. Dinosaur Prints Found Under Restaurant Table Confirmed As 100 Million Years Old
  3. Archax: Japanese Engineers Make Transformer Robot That Actually Works
  4. How Do We Know There Is Anything Beyond The Observable Universe?

Source Link: How Do Straws Work, And Why Don't They Work As Well At High Altitudes?

Filed Under: News

Primary Sidebar

  • Do Any Frogs Or Toads Give Birth To Live Young? Just One: Meet The Western Nimba Toad
  • Tasmanian Tigers’ Genetics May Have Doomed Them Long Before Humans Came Along
  • Scientists “Wake Up” Ancient Life That’s Been Under The Seabed For 100 Million Years
  • Measurable Brain Changes Following Cognitive Behavioral Therapy Identified For The First Time
  • “It Was Really Unexpected”: Scientists Stunned By Glowing Plants, And All It Takes Is An Injection
  • Scientists Created Gene-Edited Albino Cane Frogs To Unravel The Mysteries Of Natural Selection
  • In Vivo Vs In Vitro: What Do They Actually Mean?
  • IFLScience The Big Questions: What Will The Fossils Of The Future Look Like?
  • Finally, A Successful Starship Launch – What This Means For The Moon Landings
  • 26 Years After Launch, The ISS Will Try A New Way To Stay In Orbit Next Month
  • The World Map As You Know It Is Misleading – Now Africa Wants To Change That
  • “It’s Totally Wacky”: Oldest Known Ankylosaur Had A Kind Of Armor Never Seen In Any Vertebrate – Living Or Extinct
  • “Lost City Of The Amazon” Wasn’t Destroyed By A Volcano After All
  • Why Do Hammerhead Sharks Have A Hammerhead?
  • Neanderthals In Iberia Had Funerary Practices – They’re Just Not What We Expected
  • Monochrome Rainbows: In The Right Circumstances, Rainbows Can Look Very Strange Indeed
  • Shark Teeth Are Losing Their Bite As Ocean Acidification Takes Hold
  • Wasp “Riding A Broomstick” Among Fantastic Finalists Of Wildlife Photographer Of The Year
  • Long-Lost Sailback Houndshark Not Seen Since 1973 Rediscovered In Papua New Guinea
  • How Do You Age A Gas Giant? Jupiter’s Age Revealed By “Molten Rock Raindrops”
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version