• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Do We Know The Age Of Stars?

April 21, 2023 by Deborah Bloomfield

There is only a star we are pretty sure we’ve got the right age for, and that is the Sun. Getting that value for every other star, from the very young to the very old, is a matter of clever modeling that tries to fit stars into a nice neat mold. And while it works often, it is far from perfect and is ultimately down to how much we know about the stars. Even when it comes to our own Sun, there is plenty we do not know.

But the age of stars is an important factor to know, and theoretically it is quite easy to work out what you need to look for. It’s in practice that it becomes difficult. 

Advertisement

For most of the lifetime of a star, it will be fusing hydrogen, and how long that lasts depends on the mass of the star – but not in an obvious way.

Massive stars have more fuel to burn, but they also radiate a lot more energy. To not collapse on themselves, they need to be fusing a lot more than a star like the Sun, so they will go through said fuel in a much shorter time. Smaller stars will instead take things more slowly, as they do not have to burn through their fuel as quickly to maintain their internal equilibrium.

Based on this, you can see there is a law that connects the age to the mass of a star. This is a useful way to get to some type of estimate. It is important to know that no matter the size, when a star begins to release energy due to internal nuclear fusion of hydrogen, it will belong to a group called the main sequence.

A Hertzsprung–Russell diagram plots the luminosity of a star against its color index/temperature/or stellar classification. The main sequence is visible as a prominent diagonal band that runs from the upper left to the lower right.

A schematic Hertzsprung–Russell diagram showing where the main sequence and other portions of stars exist in this classification. Image credit: gstraub/Shutterstock.com

The term comes from the distribution of these stars on the Hertzsprung–Russell (HR) diagram. On the vertical axis is the luminosity of these objects, and on the other the color index (or temperature, or stellar classification). The blue-white stars are the biggest and hottest, in the top left, and the red dwarfs are in the bottom right. The Sun is somewhere in the middle. When stars move off the main sequence they become red giants (and then supergiants), so their luminosity tends to stay the same but their color changes. All this can be useful when it comes to estimating their ages.

Advertisement

If you have a group of stars in a cluster, they likely formed at roughly the same time as each other. You will have a larger number of small stars than big ones, but at year zero you would expect to have them all in the main sequence. 

Now, if you go and check on them a certain time later, a certain number of them will have moved off the main sequence. By plotting them on the HR diagram you can find the turnoff point. If in this cluster that point was a star like the Sun, you’d guess that the cluster is about 10 billion years old, since that’s how long the Sun is expected to stay on the main sequence.

Obviously, this approach would not be useful if you had an individual star. To try and gain some idea, another technique can be helpful: asteroseismology. This approach looks at the oscillations within the stars to gain insights. Stars turn hydrogen into helium, so an older star is going to have more helium and sound waves will propagate differently. And from that, age can be assumed.

There are also methods that looked at the rotation of a star, and from that infer an age. This appears to work for the low-mass main sequence stars. For stars too young to be in the main sequence, it is possible to guess an age based on the presence of material around them, or their variability before they settle into a “calmer” main sequence phase.

Advertisement

These methods directly or indirectly rely on what we know of the Sun. The more we learn about our little yellow star, the better we will understand all the stars in the Universe.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Texas city to offer Samsung large property tax breaks to build $17 billion chip plant
  2. U.S. sanctions several Hong Kong-based Chinese entities over Iran -website
  3. Asian stocks fall to near 1-year low as oil prices stoke inflation worries
  4. “Unique” Medieval Christian Art Discovered By Accident In Sudan Desert

Source Link: How Do We Know The Age Of Stars?

Filed Under: News

Primary Sidebar

  • The Place On Earth Where It Is “Impossible” To Sink, Or Why You Float More Easily In Salty Water
  • Like Catching A Super Rare Pokémon: Blonde Albino Echnida Spotted In The Wild
  • Voters Live Longer, But Does That Mean High Election Turnout Is A Tool For Public Health?
  • What Is The Longest Tunnel In The World? It Runs 137 Kilometers Under New York With Famously Tasty Water
  • The Long Quest To Find The Universe’s Original Stars Might Be Over
  • Why Doesn’t Flying Against The Earth’s Rotation Speed Up Flight Times?
  • Universe’s Expansion Might Be Slowing Down, Remarkable New Findings Suggest
  • Chinese Astronauts Just Had Humanity’s First-Ever Barbecue In Space
  • Wild One-Minute Video Clearly Demonstrates Why Mercury Is Banned On Airplanes
  • Largest Structure In The Maya Realm Is A 3,000-Year-Old Map Of The Cosmos – And Was Built By Volunteers
  • Could We Eat Dinosaur Meat? (And What Would It Taste Like?)
  • This Is The Only Known Ankylosaur Hatchling Fossil In The World
  • The World’s Biggest Frog Is A 3.3-Kilogram, Nest-Building Whopper With No Croak To Be Found
  • Interstellar Object 3I/ATLAS Has Slightly Changed Course And May Have Lost A Lot Of Mass, NASA Observations Show
  • “Behold The GARLIATH!”: Enormous “Living Fossil” Hauled From Mississippi Floodplains Stuns Scientists
  • We Finally Know How Life Exists In One Of The Most Inhospitable Places On Earth
  • World’s Largest Spider Web, Created By 111,000 Arachnids In A Cave, Is Big Enough To Catch A Whale
  • What Is A Horse Chestnut? A Crusty Remnant Of Evolution (That People Like To Feed Their Dogs)
  • First Evidence Of High “Forever Chemicals” In Urban Wild Mammals Reveals Australian Possums Contaminated With PFAS
  • Why Don’t You Have A Tail?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version