• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Do We Know There Is Anything Beyond The Observable Universe?

May 16, 2024 by Deborah Bloomfield

We can only see light that has made it to our vantage point, meaning that there is a limit to how much of the universe we can see – known as the observable universe – as the light has not yet made it to us. 

Advertisement

In a static universe, the only thing stopping us from seeing those distant objects (as well as the Doppler effect) is the time it takes to get to us. In a static universe, as time went on, we would detect more and more light from distant objects and our Hubble horizon – the amount of universe we can observe – would grow. 

Advertisement

At some point in the far-off future, the rest of the universe would become observable to us. Unfortunately, we do not live in a static universe, but one that is expanding at an estimated 73 kilometers (45.3 miles) per second per megaparsec.  

As the universe expands, that changes. The distance between us and all other stars increases, and our observable universe will shrink, giving us less to observe and play with as time drags on. In the universe we believe we are in, more distant objects will disappear from our view faster and faster.



For now, our observable universe will continue to grow with the light from distant stars that can reach us, but has not had the time to reach us; one estimate says that we have only observed around 43 percent of the galaxies that we will eventually be able to observe as their light reaches us.

Advertisement

So, what is beyond the observable universe? The obvious answer to this is a big “we don’t know”. In fact, we will never truly know as it is, by definition, unobservable. However, that doesn’t mean we can’t know anything about it, nor make sensible guesses about what it contains. 

For a start, we can (fairly confidently) assume that there is more universe beyond what we can observe. 

In all directions in space, we can detect the cosmic microwave background (CMB). This is the leftover radiation from around 400,000 years after the universe began, that is faintly detectable and permeates all of the known universe. This radiation – from the first light of the universe – has been traveling to us for 13.7 billion years whichever direction we look. This tells us we are either in one typical part of a larger universe, or that we are smack bang in the middle of a universe the size of our observable universe. 

As well as being able to dismiss this as unlikely based on the cosmological principle – the principle that we should not assume that we occupy a privileged region within the universe – we can test this, to an extent. There is an idea (to be filed under “likely wrong, but fun to think about”) that the observable universe could be bigger than the universe itself. If it were small enough, and sufficient time had passed, light from objects would reach us from several different directions. This would mean that in a flat universe, we could think we are seeing objects far in the distant reaches of the universe when really we are seeing the light of a near (or nearer) object that has reached us from the other direction. 

Advertisement



Looking for evidence would be difficult. Say light from a galaxy took 9 billion years to get to you from one direction, and 4 billion years from another. You would see the same galaxy at two different stages of its life, making it a mammoth task to deduce that they are they are in fact the same galaxy. However, teams have looked for evidence of this in the form of duplicated circles in the CMB, though no evidence has been found to support the idea, suggesting the universe is indeed bigger than the observable universe. 

Assuming the universe is bigger than the observable universe, we could also be able to detect the influence of objects outside our observable universe on objects towards our observable universe’s edge. To some controversy, one team has claimed to have found just this while observing distant galaxy clusters using NASA’s Wilkinson Microwave Anisotropy Probe. The team claimed to have observed movement of these clusters suggesting that they are caused by the gravitational influence of objects beyond our observable universe.

“The clusters show a small but measurable velocity that is independent of the universe’s expansion and does not change as distances increase,” lead researcher Alexander Kashlinsky at NASA’s Goddard Space Flight Center in Greenbelt said in a 2013 press release, adding “the distribution of matter in the observed universe cannot account for this motion.”

Advertisement

An object large enough to create this “dark flow”, as the team termed it, would imply that the universe is not uniform (on larger scales) in all directions, leading some to suggest that it is in fact evidence of another universe rubbing up against our own, and others proposing a (more likely) idea that there are errors within the observations. Dark flow remains controversial, with later studies finding evidence against the idea. 

Nevertheless, it could be possible in the future to detect the gravitational influence of objects beyond our observable universe. But due to the expansion of the universe and the speed limit of the universe, we will never be able to see nor influence it.

All “explainer” articles are confirmed by fact checkers to be correct at time of publishing. Text, images, and links may be edited, removed, or added to at a later date to keep information current.  

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. El Salvador president gets hands-on to fix bitcoin rollout glitches
  2. ATP roundup: Andy Murray wins San Diego opener
  3. How Did Ancient Romans Build Aqueducts?
  4. The Placebo Effect: Good Or Bad For Us?

Source Link: How Do We Know There Is Anything Beyond The Observable Universe?

Filed Under: News

Primary Sidebar

  • Winds On Mars Are Faster Than Thought, Analysis Of 1,039 Dust Devils Shows
  • 400,000-Year-Old Fossil Shows Butchering Elephants Helped Early Humans To Supersize Their Tools
  • Ignore The Nonsense: Here Are The Real Images Of Interstellar Object 3I/ATLAS
  • This Rare Spider Is Half-Female, Half-Male Split Down The Middle – Oh, And A New Species
  • Comet 3I/ATLAS Caught On Camera From Mars Orbit: “This Was A Challenge”
  • JWST Captures Best Image Yet Of A Supergiant Star Before It Went Supernova
  • Isaac Newton’s “Apocalypse Calculations” Predicted A World-Changing Event In 2060
  • 2024-25 Saw The Most US Kids Dying From Flu Since The Swine Flu Pandemic
  • Technology, Tactics, Or Just Toughing It Out: How Exactly Did Neanderthals Take Down Mammoths, Anyway?
  • Nobel Prize In Chemistry Awarded For New Material Breakthrough
  • Interstellar Object 3I/ATLAS May Be A 10-Billion-Year-Old Time Capsule From An Earlier Age Of The Universe
  • Restless Leg Syndrome Might Increase Someone’s Risk Of Parkinson’s Disease
  • Behold! The World’s First Butt-Drag Fossil, Committed By A Rock Hyrax 126,000 Years Ago
  • Norovirus Is Rife On US Cruise Ships – 2025 Hits 18-Year Outbreak High
  • New Species Of Tiny Glowing Lanternshark And Ghost-Like Crab Discovered In Deep Sea
  • Hairy Frog: The Wolverine Frog That Breaks Its Bones To Make Claws When Threatened
  • Move Over, Footballfish – This Deep-Sea Freak Might Just Be The Most Cursed Creature In The Ocean
  • The Strongest Magnetic Field On Earth Is Located In The US. It Measures 1,000,000 Gauss
  • Gold Literally Grows On Christmas Trees In Lapland
  • Meet The Fishing Spiders: Stealthy, Semi-Aquatic Hunters That Can Kill Prey 5 Times Their Size
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version