• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Does A Thermos Know To Keep Hot Things Hot And Cold Things Cold?

February 19, 2025 by Deborah Bloomfield

There’s an old joke, that goes a little something like this: a thermos can keep hot things hot and cold things cold. But how does it know?

ADVERTISEMENT GO AD FREE

The joke is that the teller doesn’t know how a thermos works, but it’s a fairly common question and there’s no shame in not knowing how all of your crockery works. Besides, the answer is pretty interesting.

Unless you are the type who thinks the talking crockery section of Beauty and the Beast was a documentary, you know that thermoses do not know when they are supposed to keep things hot or cold. So the question becomes: how do thermoses keep hot things hot and cold things cold? That’s a little easier to answer, with some good old-fashioned thermodynamics. 

Thermoses are pretty commonplace today, and largely used for keeping, for example, baked beans warm (yes, we’re a British publication, get over it). But like the microwave was originally invented for heating up dead hamsters, thermoses emerged from non-food-related research.

In the late 19th century, Scottish chemist and physicist James Dewar developed a machine capable of yielding large quantities of liquid oxygen. The problem was that liquid oxygen boils at around –183°C (–297°F), and there was no way to keep it cool long enough to study it. 

He was fighting the law of thermodynamics (as you should), specifically, the second law, which dictates that heat always flows from hotter to colder areas. Yes, we know the second law says a lot more than that, but that 19th-century understanding is sufficient for talking about the device that keeps your beans warm.

Heat is lost to the environment in three ways; conduction, convection, and radiation. Conduction is the heat transfer that happens through direct contact, and energy transfer through collisions between molecules and atoms. Convection takes place in fluids, as hotter fluid rises to the top of a system and cooler fluid sinks, creating convection currents. Radiation, meanwhile, takes place through electromagnetic waves emitted as atoms move around or vibrate.

ADVERTISEMENT GO AD FREE

When you place hot coffee in a cup, heat is lost to conduction as the atoms within your cup collide with the sides of it, and the air above, transferring some of their energy to it. Convection helps speed things up, delivering hotter fluid to the top for its turn to be cooled until the temperature of your cup of atoms matches the surrounding environment.

Dewar came up with a way to significantly slow down these processes, though in his case it was to keep a liquid cool. In 1892, he came up with a simple, though ingenious, solution. He simply placed one flask within another, separated by a near-vacuum. The vacuum layer prevents conduction and convection, while inside the flask, he applied a reflective material to slow radiation.



The system slows the liquids or beans within from being heated by the outside environment, or cooled by it if you prefer your beans hot. Dewar did not end up patenting the system, and improved, smaller flasks soon became known by the name “Thermos” after the company obtained a patent for it.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Kingfisher profit up 62% on home improvement boom
  2. Britain says exact date on U.S. travel reopening still not known
  3. Twitter Says It Is No Longer Stopping Any COVID-19 Misinformation
  4. Sapphires Are Cooked Up By Volcanic Fury – And Now We Know How

Source Link: How Does A Thermos Know To Keep Hot Things Hot And Cold Things Cold?

Filed Under: News

Primary Sidebar

  • Earth’s First Commercial Space Station Set To Launch In 2026
  • Black Hole Moon: Rogue Planets With Weird Signatures Could Be A Sign Of Advanced Alien Life
  • World’s Largest Ephemeral Lake Set To Turn Iconic Peachy Pink After Extreme Flooding
  • Stunning New JWST Observations Give Further Evidence That Dark Matter Is A Real Substance
  • How Big Is This Spider? Study Explains Why You Might Overestimate Their Size
  • Orcas Sometimes Give Humans Presents Of Food And We Don’t Know Why
  • New Approach For Interstellar Navigation Was Tested On A Spacecraft 9 Billion Kilometers Away
  • For Only The Second Recorded Time, Two Novae Are Visible With The Naked Eye At Once
  • Long-Lost Ancient Egyptian City Ruled By Cobra Goddess Discovered In Nile Delta
  • Much Maligned Norwegian Lemming Is One Of The Newest Mammal Species On Earth
  • Where Are The Real Geographical Centers Of All The Continents?
  • New Species Of South African Rain Frog Discovered, And It’s Absolutely Fuming About It
  • Love Cheese But Hate Nightmares? Bad News, It Looks Like The Two Really Are Related
  • Project Hail Mary Trailer First Look: What Would Happen If The Sun Got Darker?
  • Newly Discovered Cell Structure Might Hold Key To Understanding Devastating Genetic Disorders
  • What Is Kakeya’s Needle Problem, And Why Do We Want To Solve It?
  • “I Wasn’t Prepared For The Sheer Number Of Them”: Cave Of Mummified Never-Before-Seen Eyeless Invertebrates Amazes Scientists
  • Asteroid Day At 10: How The World Is More Prepared Than Ever To Face Celestial Threats
  • What Happened When A New Zealand Man Fell Butt-First Onto A Powerful Air Hose
  • Ancient DNA Confirms Women’s Unexpected Status In One Of The Oldest Known Neolithic Settlements
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version