• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Does A Thermos Know To Keep Hot Things Hot And Cold Things Cold?

February 19, 2025 by Deborah Bloomfield

There’s an old joke, that goes a little something like this: a thermos can keep hot things hot and cold things cold. But how does it know?

ADVERTISEMENT GO AD FREE

The joke is that the teller doesn’t know how a thermos works, but it’s a fairly common question and there’s no shame in not knowing how all of your crockery works. Besides, the answer is pretty interesting.

Unless you are the type who thinks the talking crockery section of Beauty and the Beast was a documentary, you know that thermoses do not know when they are supposed to keep things hot or cold. So the question becomes: how do thermoses keep hot things hot and cold things cold? That’s a little easier to answer, with some good old-fashioned thermodynamics. 

Thermoses are pretty commonplace today, and largely used for keeping, for example, baked beans warm (yes, we’re a British publication, get over it). But like the microwave was originally invented for heating up dead hamsters, thermoses emerged from non-food-related research.

In the late 19th century, Scottish chemist and physicist James Dewar developed a machine capable of yielding large quantities of liquid oxygen. The problem was that liquid oxygen boils at around –183°C (–297°F), and there was no way to keep it cool long enough to study it. 

He was fighting the law of thermodynamics (as you should), specifically, the second law, which dictates that heat always flows from hotter to colder areas. Yes, we know the second law says a lot more than that, but that 19th-century understanding is sufficient for talking about the device that keeps your beans warm.

Heat is lost to the environment in three ways; conduction, convection, and radiation. Conduction is the heat transfer that happens through direct contact, and energy transfer through collisions between molecules and atoms. Convection takes place in fluids, as hotter fluid rises to the top of a system and cooler fluid sinks, creating convection currents. Radiation, meanwhile, takes place through electromagnetic waves emitted as atoms move around or vibrate.

ADVERTISEMENT GO AD FREE

When you place hot coffee in a cup, heat is lost to conduction as the atoms within your cup collide with the sides of it, and the air above, transferring some of their energy to it. Convection helps speed things up, delivering hotter fluid to the top for its turn to be cooled until the temperature of your cup of atoms matches the surrounding environment.

Dewar came up with a way to significantly slow down these processes, though in his case it was to keep a liquid cool. In 1892, he came up with a simple, though ingenious, solution. He simply placed one flask within another, separated by a near-vacuum. The vacuum layer prevents conduction and convection, while inside the flask, he applied a reflective material to slow radiation.



The system slows the liquids or beans within from being heated by the outside environment, or cooled by it if you prefer your beans hot. Dewar did not end up patenting the system, and improved, smaller flasks soon became known by the name “Thermos” after the company obtained a patent for it.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Kingfisher profit up 62% on home improvement boom
  2. Britain says exact date on U.S. travel reopening still not known
  3. Twitter Says It Is No Longer Stopping Any COVID-19 Misinformation
  4. Sapphires Are Cooked Up By Volcanic Fury – And Now We Know How

Source Link: How Does A Thermos Know To Keep Hot Things Hot And Cold Things Cold?

Filed Under: News

Primary Sidebar

  • The Bizarre 1997 Experiment That Made A Frog Levitate
  • There’s A Very Good Reason Why October 1582 On Your Phone Is Missing 10 Days
  • Skynet-1A: Military Spacecraft Launched 56 Years Ago Has Been Moved By Persons Unknown
  • There’s A Simple Solution To Helping Avoid Erectile Dysfunction (But You’re Not Going To Like It)
  • Interstellar Object 3I/ATLAS May Be 10 Billion Years Old, This Rare Spider Is Half-Female, Half-Male Split Down The Middle, And Much More This Week
  • Why Do Trains Not Have Seatbelts? It’s Probably Not What You Think
  • World’s Driest Hot Desert Just Burst Into A Rare And Fleeting Desert Bloom
  • Theoretical Dark Matter Infernos Could Melt The Earth’s Core, Turning It Liquid
  • North America’s Largest Mammal Once Numbered 60 Million – Then Humans Nearly Drove It To Extinction
  • North America’s Largest Ever Land Animal Was A 21-Meter-Long Titan
  • A Two-Headed Fossil, 50/50 Spider, And World-First Butt Drag
  • Interstellar Comet 3I/ATLAS Is Losing Buckets Of Water Every Second – And It’s Got Cyanide
  • “A Historic Shift”: Renewables Generated More Power Than Coal Globally For First Time
  • The World’s Oldest Known Snake In Captivity Became A Mom At 62 – No Dad Required
  • Biggest Ocean Current On Earth Is Set To Shift, Spelling Huge Changes For Ecosystems
  • Why Are The Continents All Bunched Up On One Side Of The Planet?
  • Why Can’t We Reach Absolute Zero?
  • “We Were Onto Something”: Highest Resolution Radio Arc Shows The Lowest Mass Dark Object Yet
  • How Headsets Made For Cyclists Are Giving Hearing And Hope To Kids With Glue Ear
  • It Was Thought Only One Mammal On Earth Had Iridescent Fur – Turns Out There’s More
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version