• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Glacier Algae Are Challenging The Way We Think About Evolution

June 23, 2024 by Deborah Bloomfield

People often underestimate tiny beings. But microscopic algal cells not only evolved to thrive in one of the most extreme habitats on Earth – glaciers – but are also shaping them.

With a team of scientists from the UK and Canada, we traced the evolution of purple algae back hundreds of millions of years and our findings challenge a key idea about how evolution works. Though small, these algae are having a dramatic effect on the glaciers they live on.

Glaciers are among the planet’s fastest changing ecosystems. During the summer melt season as liquid water forms on glaciers, blooms of purple algae darken the surface of the ice, accelerating the rate of melt. This fascinating adaptation to glaciers requires microscopic algae to control their growth and photosynthesis. This must be balanced with tolerance of extreme ice melt, temperature and light exposure.

Our study, published in New Phytologist, reveals how and when their adaptations to live in these extreme environments first evolved. We sequenced and analysed genome data of the glacier algae Ancylonema nordenskiöldii. Our results show that the purple colour of glacier algae, which acts like a sunscreen, was generated by new genes involved in pigment production.

This pigment, purpurogallin, protects algal cells from damage of ultraviolet (UV) and visible light. It is also linked with tolerance of low temperatures and desiccation, characteristic features of glacial environments. Our genetic analysis suggests that the evolution of this purple pigment was probably vital for several adaptations in glacier algae.

We also identified new genes that helped increase the algae’s tolerance to UV and visible light, important adaptations for living in a bright, exposed environment. Interestingly these were linked to increased light perception as well as improved mechanisms of repair to sun damage. This work reveals how algae are adapted to live on glaciers in the present day.

Next, we wanted to understand when this adaptation evolved in Earth’s deep history.

The evolution of glacier algae

Earth has experienced many fluctuations of colder and warmer climates. Across thousands and sometimes millions of years, global climates have changed slowly between glacial (cold) to interglacial (warm) periods.

One of the most dramatic cold periods was the Cryogenian, dating back to 720-635 million years ago, when Earth was almost entirely covered in snow and ice. So widespread were these glaciations, they are sometimes referred to by scientists as “Snowball Earth”.

Scientists think that these conditions would have been similar to the glaciers and ice sheets we see on Earth today. So we wondered could this period be the force driving the evolution of glacier algae?

After analysing genetic data and fossilised algae, we estimated that glacier algae evolved around 520-455 million years ago. This suggests that the evolution of glacier algae was not linked to the Snowball Earth environments of the Cryogenian.

As the origin of glacier algae is later than the Cryogenian, a more recent glacial period must have been the driver of glacial adaptations in algae. Scientists think there has continuously been glacial environments on Earth up to 60 million years ago.

We did, however, identify that the common ancestor of glacier algae and land plants evolved around the Cryogenian.

In February 2024, our previous analysis demonstrated that this ancient algae was multicellular. The group containing glacier algae lost the ability to create complex multicellular forms, possibly in response to the extreme environmental pressures of the Cryogenian.

Rather than becoming more complex, we have demonstrated that these algae became simple and persevered to the present day. This is an example of evolution by reducing complexity. It also contradicts the well-established “march of progress” hypothesis, the idea that organisms evolve into increasingly complex versions of their ancestors.

Our work showed that this loss of multicellularity was accompanied by a huge loss of genetic diversity. These lost genes were mainly linked to multicellular development. This is a signature of the evolution of their simple morphology from a more complex ancestor.

Over the last 700 million years, these algae have survived by being tiny, insulated from cold and protected from the Sun. These adaptations prepared them for life on glaciers in the present day.

So specialised is this adaptation, that only a handful of algae have evolved to live on glaciers. This is in contrast to the hundreds of algal species living on snow. Despite this, glacier algae have dramatic effects across vast ice fields when liquid water forms on glacier surfaces. In 2016, on the Greenland ice sheet, algal growth led to an additional 4,400–6,000 million tonnes of runoff.

Understanding these algae helps us appreciate their role in shaping fragile ecosystems.

Our study gives insight into the evolutionary journey of glacier algae from the deep past to the present. As we face a changing climate, understanding these microscopic organisms is key to predicting the future of Earth’s icy environments.The Conversation

Alexander Bowles, Postdoctoral research associate, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. UK PM Johnson to address lawmakers about Afghanistan on Monday
  2. Pandemic-hit Qantas weighs new pay structure to keep key executives
  3. Toyota’s Woven Planet acquires vehicle operating system developer Renovo Motors
  4. This Is What Cannabis Looks Like Under A Microscope – You Might Be Surprised

Source Link: How Glacier Algae Are Challenging The Way We Think About Evolution

Filed Under: News

Primary Sidebar

  • Turns Out, The World’s Most Famous Star Cluster Is Just Part Of A Vast Family Of Stars
  • Watch First-Ever Video Footage Of A Humpback Whale Calf Nursing Underwater
  • People Are Blown Away Learning That You Can “Smell” Snow
  • New Bee Species With A Devilish Name Sports Horns On Its Head Like A Tiny Demon
  • The World’s Smallest Bear Isn’t Just A Guy In A Bear Suit, We Promise
  • Vowel Sounds “Thought To Be Unique To Humans” Discovered In Sperm Whales For The First Time
  • Bizarre Creature With “All-Body Brain” Challenges What We Know About Evolution of Nervous Systems
  • For First Time, Astronomers Record A Coronal Mass Ejection From A Star That’s Not Our Sun
  • In 2032, Earth May Be Treated To A Meteor Shower Like No Other, Courtesy Of “City-Killer” Asteroid 2024 YR4
  • “A Wave Of Poo”: People Reversed The Direction Of The Chicago River’s Flow In 1900
  • Watch Out For Aurorae Tonight – The Strongest Solar Flare Of 2025 So Far Just Erupted From The Sun
  • First Radio Detection Received From Interstellar Object 3I/ATLAS. What Does That Mean?
  • “Drop Crocs”: Australia Once Had Ancient Crocs That Climbed Trees To Jump On Their Prey
  • How We Know Interstellar Object 3I/ATLAS Is Not An Alien Mothership
  • First-Of-Its-Kind Evidence Shows Bees Can Learn “Morse Code” – Well, Kinda
  • Humans Have A “Seventh Sense” That Lets You Touch Things From A Distance
  • The Longest Place Name Has 111 Letters – And It’s Visited By Millions Of People Each Year
  • We Now Know Why Neanderthal Faces Looked So Different To Our Own
  • Why Does Africa Have So Many Of The World’s Largest Land Animals?
  • This “Ant-Mimicking” Spider Produces Its Own Kind Of Milk And Nurses Its Babies
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version