• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Humanity Could Power Starships By Creating Artificial Black Holes

July 2, 2024 by Deborah Bloomfield

If we one day want to explore the galaxy (let alone the rest of the universe) humanity has a speed issue. In late 2023, NASA’s Parker Solar Probe achieved the highest speed ever achieved by a human-made object, clocking in at 635,266 kilometers (394,736 miles) per hour.

Advertisement

While impressive, that’s only 0.059 percent of the speed of light. Visiting our closest neighbor Proxima Centauri, 4.2 light-years away, at these speeds would take around 7,700 years, making generational ships (or robotic probes) necessary to explore it or any other interesting star further away.

Advertisement

Such large ships would require a lot of propellant to get us anywhere near the velocities we would need to reach the stars. Physicists have proposed various methods to do this using current physics, and more speculative ways such as warp drives, with the goal of accelerating a useful-sized spaceship to these speeds without expending a huge amount of fuel. 

One such idea is to create an artificial black hole, and then power the spaceship using the Hawking radiation emitted from the event horizon.

“A stellar-mass black hole forms when a star with more than 20 solar masses exhausts the nuclear fuel in its core and collapses under its own weight,” NASA explains. “The collapse triggers a supernova explosion that blows off the star’s outer layers. But if the crushed core contains more than about three times the Sun’s mass, no known force can stop its collapse to a black hole.”

A black hole of that size – or a supermassive black hole – would be too large to usefully power a spaceship, which would have to drag the black hole along with it, requiring it to be of similar mass. Besides this, smaller black holes emit higher temperature and energy radiation, making them more useful for powering spacecraft.

Advertisement

So how do we get a smaller black hole? Many physicists believe that primordial black holes could have formed in the first few seconds of the universe, when all the stuff that would go on to create the stars and galaxies was more tightly packed together.

“In that moment, pockets of hot material may have been dense enough to form black holes, potentially with masses ranging from 100,000 times less than a paperclip to 100,000 times more than the Sun’s,” NASA explains. “Then as the universe quickly expanded and cooled, the conditions for forming black holes this way ended.”

We have never detected such a black hole, and it’s still unclear if they exist at all, or at least in the numbers and size at which we might be able to detect them. So if we want a black hole to power a spaceship, we might need to create an artificial one. 



Advertisement

In one paper from back in 2009 looking into the feasibility of black hole-powered starships, physicists noted that it would have to be powerful enough to accelerate itself to speeds approaching that of light in a reasonable timeframe, be small enough that we can get enough energy to make it, and large enough that we can focus the energy needed to make it. Doing the math, they found that such a black hole could plausibly be made, and fairly quickly at that. 

“We find that a black hole with a radius of a few attometers at least roughly meets the list of criteria,” the team writes in their paper. “Such BHs would have mass of the order of 1,000,000 tonnes, and lifetimes ranging from decades to centuries. A high-efficiency square solar panel a few hundred km on each side, in a circular orbit about the sun at a distance of 1,000,000 km, would absorb enough energy in a year to produce one such BH.”

The idea – known as a kugelblitz – is that focusing enough energy into one tiny point would create a black hole (with mass and energy being equivalent). 

The team believes such a black hole could accelerate itself to relativistic speeds in a matter of decades.

Advertisement

While collecting the energy needed (never mind focusing it to a precise point needed to create a black hole) would be a hell of a mission, creating a drive from it is even more logistically challenging. The team proposes that the black hole could be used as a power plant – surrounding it with collectors that accumulate the dense energy emitted from the horizon. Alternatively, the spaceship could generate thrust by directing gamma rays.

“We could add a thick layer of matter which would absorb the gamma rays, reradiate in optical frequencies, and focus the resulting light rays,” the team writes. “An absorber which stops only gamma rays heading towards the front of the ship and allows the rest to escape out the back causes gamma rays to radiate from the ship asymmetrically. In this way, even the escaping non-absorbed gamma rays contribute some thrust.”

While a cool idea (and perhaps possible), recent papers have suggested they might be impossible thanks to quantum effects.



Advertisement

While it could be possible using primordial black holes, that would involve finding them first. Should they exist, that may be possible using the upcoming Nancy Grace Roman telescope. But don’t hold your breath for finding one of the right size, and near enough to be useful for powering awesome black hole starships.

The paper is posted to the pre-print server arXiv.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Bolivian president calls for global debt relief for poor countries
  2. Five Seasons Ventures pulls in €180M fund to tackle human health and climate via FoodTech
  3. Humanity’s Journey To A Metal-Rich Asteroid Launches Today. Here’s How To Watch
  4. Ancient DNA Reveals People Caught Leprosy From Adorable Woodland Critters In Medieval England

Source Link: How Humanity Could Power Starships By Creating Artificial Black Holes

Filed Under: News

Primary Sidebar

  • The Sun Is Giving Us A Spooky Grimace Just In Time For Halloween
  • Comet 3I/ATLAS Reaches Perihelion Today – “Alien Spaceship” Hypothesis To Be Tested Once And For All
  • Search For Shackleton’s “Lost” Ship Uncovered 1,000 Dimples On The Antarctic Seafloor – What Are They?
  • Your Banana Smoothie Might Be Kind Of Self-Defeating, Health-Wise
  • What Are Those Zigzags You See In Spiders’ Webs? Study Finds They Could Be A Kind Of Alarm System
  • The Deepest Fish Ever Filmed Was Found 8,336 Meters Below The Surface In A Vast Ocean Trench
  • Supersonic Flight Without The Boom: NASA’s X-59 Experimental Aircraft Takes Flight For First Time
  • The Oldest Ice Ever Recovered Contains Antarctic Air Bubbles From 6 Million Years Ago
  • Freaky “Frankenstein” Worms Can Get Reproduction Wrong And End Up With Two Heads
  • Hedgehog, Lasagna, and Brussels Sprouts: Meet 2025’s Newly Named North Atlantic Right Whales
  • Can You Be Allergic To Other People? Yes, And It Sounds Like The Worst Thing Ever
  • Animals With “Urban Superpowers” Lurk In London’s Underground, And Some Of Them Want To Drink Your Blood
  • This Is The Largest Radio Color Image Of The Milky Way Ever Assembled – And It’s Gorgeous
  • Why We Can’t Stop Watching True Crime: The Psychological Pull And The Ethical Push
  • “Silent, Ongoing Genocide”: World’s 196 Uncontacted Tribes Are Facing Grave Threats To Their Survival
  • Golden Tigers Are Among The Rarest Big Cats In The World, But They Spell Bad News For Tigers
  • Rare 2-Million-Year-Old Infant Facial Fossils Expand What We Know About Prehistoric Human Children
  • First-Ever 3D Map Of Planet Outside Solar System Reveals Distant World’s Hot Spot And Cool Ring
  • From Chains To Forests: Working Elephants Set To Be Rehabilitated In The Wild Under New Project
  • Why Does Death Have Such A Distinctive Smell?
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version