• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

How Nuclear Fusion Can Change The World

December 14, 2022 by Deborah Bloomfield

Nuclear fusion ignition was achieved for the first time at the Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) this month. This historic first shows that we can create controlled fusion in the lab that releases more energy than we put in. And while the road to a commercial fusion power plant is long, this is a huge milestone. As some people have described it, we’ve got the physics down now it’s just an engineering problem.

That we have the physics down is mostly correct but there is still room for refinement and the engineering part is certainly the crucial hurdle. The event achieved Q = 1.54. Getting the exact amount of energy out that you put in is Q = 1, so they got 54 percent more. Several commentators said online that a realistic target for a commercial reactor would be something closer to Q = 10.

Advertisement

How Does Fusion Work In Stars?

Nuclear fusion is what powers the Sun and all the stars in the Universe. Under the enormous pressure and heat inside stars, lighter nuclei are pushed together, overcoming their electromagnetic repulsion, and merged into a heavier nucleus. This process releases a lot of energy simply because the energy-mass relation of the original elements is greater than the products. The difference is the energy that is released.

So, for example, the Sun converts about 600 million tons of hydrogen into 596 million tons of helium every second. Hydrogen is the easiest element to fuse, having just one proton in its nucleus. As the elements get heavier with more and more of these positively charged particles, you get less and less energy out. You can’t fuse anything heavier than iron and expect to get energy out.

Fusion in the lab works on the same principles but with a few important differences. First of all, we are not building a whole Sun. The amount of hydrogen fused is comparatively tiny and it requires much higher temperatures, given that the pressure in these reactors is categorically different from those at the center of stars.

How Is Fusion Achieved In The Lab?

Scientists have come up with different reactor designs to do the same thing: pushing hydrogen atoms together. Although not the regular hydrogen made of just one proton in its nucleus. They often use two isotopes of hydrogen that have extra neutrons in the nucleus: deuterium has one neutron and tritium has two. Lithium is also another possible element used in some designs. 

Whatever the elements, the goal of the fusion reaction is to liberate energy and high-speed neutrons. The latter are key for extracting energy. These particles will hit the containment walls, heating them up. That heat can then be used to heat up a fluid that is then used to move turbines.

The leading designs (but there are many different ones) use inertial confinement (ICF) by laser which has just shown its success at the NIF, the tokamak, and the stellarator. The NIF design sees a heavy hydrogen pellet placed in a tiny cylinder. This container is shot with the largest laser in the world and vaporized in an instant. As it turns into plasma it shoots inwards, where it encounters the hydrogen (or other nuclear fuel) with such force that the fuel is compressed and fuses.

Advertisement

The tokamak and stellarator approach instead confine hydrogen plasma within a magnetic field and it is heated to incredible temperatures, much hotter than the center of the Sun. So far, these approaches have not reached ignition so the energy produced in the plasma is not enough to keep the plasma hot. A full-scale tokamak reactor called ITER is currently being built in the south of France which should hopefully demonstrate this.

We actually discuss the enormous potential of ITER and the technical challenges to making it work in our podcast, The Big Questions:

Is It Clean And Safe?

One of the major claims of nuclear fusion is that it is safe and clean. And in large part, this is true. A fully operational nuclear fusion power plant would not risk a nuclear meltdown. If something goes wrong, the plasma cools down and stops being plasma. It also doesn’t emit carbon dioxide. It does produce nuclear waste, simply because the neutrons emitted makes the material that absorbs them radioactive. But the quantity of this material is tiny compared to high-level nuclear waste produced in nuclear fission power plants.

The fuels used tend to be in ample supply in nature but it also depends on how they are extracted from the environment. There are also concerns about how fusion power technology could be used for military purposes as nuclear fusion can produce tritium, used in hydrogen bombs, or more quickly and efficiently produce weapons-grade plutonium or uranium. So as technology goes, it has the potential to be clean and safe, but it ultimately depends on how we approach it.

Nuclear fusion research has achieved some important milestones in these last few years, and it seems that the old joke that nuclear fusion is always a couple of decades away might soon turn out to be true.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Former Germany defender Boateng guilty of bodily harm, fined 1.8 million euros
  2. Soccer-Lukaku a distant memory as free-scoring Inter start in style
  3. Accenture expects strong Q1 as Delta variant delays return-to-work plans
  4. High Alpha opens third venture studio: co-founder calls venture market ‘hot and crazy’

Source Link: How Nuclear Fusion Can Change The World

Filed Under: News

Primary Sidebar

  • NASA’s Voyager 1 & 2 Were Not The First Missions To Reach The Outer Solar System
  • See Incredible First Images From Space Mission That Will Weigh All The World’s Forests
  • Nudes Of The Stone Age: 6,000-Year-Old Kołobrzeg Venus Is A Prehistoric Masterpiece
  • Cannabis And Human Remains Sent To Space Go Missing After Returning To Earth On SpaceX Mission
  • Mercury’s Steep Cliffs Might Be The Result Of The Sun Squeezing The Planet
  • Dennis Hope: The Man Who Allegedly Sold Presidents Land On The Moon (That He Doesn’t Own)
  • Video: Which Animal Has The Largest Brain?
  • Amazing First Images From World’s Largest Digital Camera Revealed
  • There’s Only One Person In The World With This Blood Type
  • Garden Snails Now Venomous According To Radical Redefinition, And Things Get Surprisingly Sexy
  • “Allokelping”: Hot New Wellness Trend For Critically Endangered Orcas Showcases Impressive Tool Use
  • Beam Of Light Shone All The Way Through A Human Head For The Very First Time
  • “On My Participation In The Atomic Bomb Project”: Einstein’s Powerful Letter Goes Up For Auction For $150,000
  • Watch Friendly Dolphins Help Lead A Lost Humpback Whale Into Deeper Waters
  • World’s Largest Digital Camera Snaps 2,104 New Asteroids And Millions Of Galaxies Within A Few Hours
  • Cat Or Otter? The Jaguarundi Looks Like Both
  • “The Sea Shall Flow To Jackdaw’s Well”: Old English Mermaid Legend Traced Back Centuries
  • The Fungus Blamed For “Tutankhamun’s Curse” Could Make A Potent Anti-Cancer Drug
  • Space Might Be A Byproduct Of Three-Dimensional Time
  • “Jigsaw”-Like Fresco Made Of Thousands Of Fragments Reveals Artistic Traits Not Seen In Roman Britain Before
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version