• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Hula Hooping Robots Help Solve A Puzzling Physics Phenomenon

January 3, 2025 by Deborah Bloomfield

Academic math, you’d probably assume, is a kind of dry topic, filled with tedious equations and the like. Not so, if a new paper is to be believed: in fact, it’s an area in which you hack a common schoolyard game by teaching robots to hula hoop.

Advertisement

“We were surprised that an activity as popular, fun, and healthy as hula hooping wasn’t understood even at a basic physics level,” said Leif Ristroph, an associate professor at New York University’s Courant Institute of Mathematical Sciences and senior author of the study, in a statement Thursday.

Advertisement

“As we made progress on the research, we realized that the math and physics involved are very subtle, and the knowledge gained could be useful in inspiring engineering innovations, harvesting energy from vibrations, and improving in robotic positioners and movers used in industrial processing and manufacturing.”

Their investigation into hula hooping suitably justified, Ristroph and his team set to work figuring out how it is that the hoops stay a-hula-ing. And they did so in the most direct and Pixar-like way possible: by 3D-printing a set of gyrating “robotic hula hoopers” in various shapes, and pitting them against each other to see who hula’d best.



“We were specifically interested in what kinds of body motions and shapes could successfully hold the hoop up,” Ristroph explained, “and what physical requirements and restrictions are involved.” 

They started simple: would a cylinder be able to keep a hula hoop up and spinning? And the answer was… well, probably exactly what you’d expect: “All trials with a cylindrical body fail[ed] to suspend the hoop,” the study reports. 

Advertisement

Cones, both top- and bottom-heavy, were slightly less of a failure – but not by much. What really helped, though, was adding a curved “waist”, making what’s technically known as a hyperboloid shape: “our findings identify a necessary ‘body type’ for stable hooping that includes an appropriately angled or sloped surface – i.e., with ‘hips’ – as well as an hourglass-shaped profile.”

Graph of possible body types and how easy hula hooping is for each of them

Choose your alignment.

Image credit: NYU’s Applied Mathematics Lab

But just because a body had trouble keeping a hula up didn’t mean the whole game was off. “In all cases, good twirling motions of the hoop around the body could be set up without any special effort,” Ristroph pointed out. Rather, the results implied that anybody could get a hula going – but some people would have a harder time maintaining the spin.

In other words: yes, your curvaceous friend really does have an easier time hula hooping than you – but that doesn’t mean you’ve no hope in the hula game at all. 

“People come in many different body types – some who have these slope and curvature traits in their hips and waist and some who don’t,” Ristroph concluded. “Our results might explain why some people are natural hoopers and others seem to have to work extra hard.”

Advertisement

The study is published in the journal PNAS.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. The best PlayStation Classic prices and sales for September 2021
  2. Rebound Relationships: What They Are And Why They Can Work Better Than You Think
  3. Why Did “Steam” Appear Over the Chicago River In Freezing Temperatures?
  4. Dolce & Gabanna Launch New $108 Dog Perfume – But Should You Spritz Your Pooch?

Source Link: Hula Hooping Robots Help Solve A Puzzling Physics Phenomenon

Filed Under: News

Primary Sidebar

  • We May Finally Have A Way To Tell Female Dinosaurs From Males, World’s Largest Spider Web Is Big Enough To Catch A Whale, And Much More This Week
  • This Month’s New Moon Will Be The Farthest From Earth For The Next 18 Years
  • Playing Music To Baby Mice Shapes Their Brain Development In A Sex-Specific Way
  • Ice XXI: Scientists Discover A New Form Of Ice Born At Room Temperature Under Intense Pressure
  • Citizen Scientists Are Helping With Rescue Efforts In Hurricane Melissa’s Aftermath – Here’s How You Can Too
  • What Is The Radio Blackout Scale And When Is It Needed?
  • “It’s Alive!”: The Real (And Horrifying) Science That Inspired Mary Shelley’s Frankenstein
  • First-Ever View Of The Sun’s Polar Magnetic Field Reveals Major Surprise
  • A Killer Whale Birth Has Been Captured On Camera In The Wild For The First Time
  • If You Shine A Light In Your Garden And See Lots Of Dots Reflected Back, We’ve Got Bad News
  • The “Sailor’s Eyeball” Blob Is One Of The Largest Single-Celled Organisms Ever Discovered
  • Icefish Live In Sub-Zero Antarctic Waters, So Why Don’t They Freeze?
  • We Finally Know What Happened To The Stone Of Destiny
  • Meet The Fishing Cat: The World’s Most Aquatic Feline Has Evolved To Master The Wetlands
  • Why Is There A Mysterious White Pyramid In Arizona?
  • Humpback Hitchhickers: Watch POV Footage Of Suckerfish Clinging To Whales As They Migrate Across Oceans
  • Oldowan Tools Saw Early Humans Through 300,000 Years Of Fire, Drought, And Shifting Climates, New Site Reveals
  • There Are Just Two Places In The World With No Speed Limits For Cars
  • Three Astronauts Are Stranded In Space Again, After Their Ride Home Was Struck By Space Junk
  • Snail Fossils Over 1 Million Years Old Show Prehistoric Snails Gave Birth to Live Young
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version