• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

Human Cells Have “Memory” Wiped In Major Regenerative Medicine Breakthrough

August 28, 2023 by Deborah Bloomfield

Scientists have found a way to reprogram human cells so that they mimic the highly plastic embryonic stem cells that have so much promise for use in regenerative medicine. By essentially wiping the cell’s “memory”, the team have created so-called induced pluripotent stem (iPS) cells, which could be used to regenerate or repair diseased tissue and organs.

iPS cells are a type of pluripotent cell that can be obtained by reprogramming mature human adult cells (“somatic” cells) into an embryonic stem cell-like state. This means that they have the capacity to differentiate into any cell of the body. They were first demonstrated in 2006, and have myriad potential biomedical and therapeutic uses, including disease modeling, drug screening, and cell-based therapies.

Advertisement

Despite this promise, researchers have continually hit a stumbling block that has prevented iPS cells from realizing their potential. “A persistent problem with the conventional reprograming process is that iPS cells can retain an epigenetic memory of their original somatic state, as well as other epigenetic abnormalities,” Professor Ryan Lister, lead author of a paper presenting the latest breakthrough, said in a statement.

“This can create functional differences between the iPS cells and the [embryonic stem] cells they’re supposed to imitate, and specialised cells subsequently derived from them, which limits their use.”

Fortunately, Lister and colleagues have come up with a way to bypass this, with a new method they call transient-naïve-treatment (TNT) reprogramming. By mimicking the reset of a cell’s epigenome, which happens in very early embryonic development, they have managed to create iPS cells that look and behave much more like embryonic stem cells, with significantly fewer differences between the two.

“It solves problems associated with conventionally generated iPS cells that if not addressed could have severely detrimental consequences for cell therapies in the long run,” co-first author Jia Tan said of the potential impact of their work.

Advertisement

Tan’s fellow first author Dr Sam Buckberry went on to explain how the team achieved this groundbreaking feat, first studying changes in the somatic cell epigenome that occurred during reprogramming, then pinpointing when epigenetic abnormalities popped up (midway through reprogramming), before finally introducing a new epigenome reset step to stop this from happening.

The TNT-iPS cells they generated were then differentiated into many other cell types, including cortical neurons, skeletal muscle cells, and lung epithelial cells, and they did so better than those created using the standard method.

“TNT reprogramming corrects epigenetic memory and aberrations, producing [iPS] cells that are molecularly and functionally more similar to [embryonic stem] cells than conventional [iPS] cells,” the study authors write.

“We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.”

Advertisement

While they acknowledge that the mechanisms underpinning the epigenome aberrations are still something of a mystery, the team hope that their new method could prove just as explosive in advancing the field of regenerative medicine as its name suggests.

“We predict that TNT reprogramming will establish a new benchmark for cell therapies and biomedical research, and substantially advance their progress,” Professor Lister said.

The study is published in Nature.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Soccer – FIFA backs down on threat to fine Premier clubs who play South American players
  2. U.S. House passes abortion rights bill, outlook poor in Senate
  3. Two children killed in missile strikes on Yemen’s Marib – state news agency
  4. Study Reveals Which Humans Survived The Last Ice Age And Which Didn’t

Source Link: Human Cells Have “Memory” Wiped In Major Regenerative Medicine Breakthrough

Filed Under: News

Primary Sidebar

  • Watch Platinum Crystals Forming In Liquid Metal Thanks To “Really Special” New Technique
  • Why Do Cuttlefish Have Wavy Pupils?
  • How Many Teeth Did T. Rex Have?
  • What Is The Rarest Color In Nature? It’s Not Blue
  • When Did Some Ancient Extinct Species Return To The Sea? Machine Learning Helps Find The Answer
  • Australia Is About To Ban Social Media For Under-16s. What Will That Look Like (And Is It A Good Idea?)
  • Interstellar Comet 3I/ATLAS May Have A Course-Altering Encounter Before It Heads Towards The Gemini Constellation
  • When Did Humans First Start Eating Meat?
  • The Biggest Deposit Of Monetary Gold? It Is Not Fort Knox, It’s In A Manhattan Basement
  • Is mRNA The Future Of Flu Shots? New Vaccine 34.5 Percent More Effective Than Standard Shots In Trials
  • What Did Dodo Meat Taste Like? Probably Better Than You’ve Been Led To Believe
  • Objects Look Different At The Speed Of Light: The “Terrell-Penrose” Effect Gets Visualized In Twisted Experiment
  • The Universe Could Be Simple – We Might Be What Makes It Complicated, Suggests New Quantum Gravity Paper Prof Brian Cox Calls “Exhilarating”
  • First-Ever Human Case Of H5N5 Bird Flu Results In Death Of Washington State Resident
  • This Region Of The US Was Riddled With “Forever Chemicals.” They Just Discovered Why.
  • There Is Something “Very Wrong” With Our Understanding Of The Universe, Telescope Final Data Confirms
  • An Ethiopian Shield Volcano Has Just Erupted, For The First Time In Thousands Of Years
  • The Quietest Place On Earth Has An Ambient Sound Level Of Minus 24.9 Decibels
  • Physicists Say The Entire Universe Might Only Need One Constant – Time
  • Does Fluoride In Drinking Water Impact Brain Power? A Huge 40-Year Study Weighs In
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version