• Email Us: [email protected]
  • Contact Us: +1 718 874 1545
  • Skip to main content
  • Skip to primary sidebar

Medical Market Report

  • Home
  • All Reports
  • About Us
  • Contact Us

In 1797, Henry Cavendish Used Two Small Metal Spheres To Weigh The Entire Earth

June 12, 2023 by Deborah Bloomfield

If someone asked you to weigh the planet – assuming you haven’t paid much attention during physics in high school – you might not know where to start. How do you weigh a thing you’re standing on? That’s like being asked to weigh your own scales without using a second set of scales.

If you’re struggling, don’t despair. Figuring out how to weigh (well, measure the mass) of the Earth took until 1687, and even then we couldn’t calculate it until 1798. 

Advertisement

At the end of the 1600s, Newton proposed the universal law of gravitation: that every particle attracts every other particle in the universe with a force (F) determined by their masses (M) and the square of the distance between the centers of the objects (R). Math fans may prefer it expressed like this: F=G(M1xM2/D2)

As you can tell from the math, if you have the mass of one of the objects (and all the other information within the equation) you can figure out the mass of the second object. Say you were one of the known masses (or you used a specific weight for ease): you could calculate the weight of the Earth, given that we know roughly how far we are from the Earth’s center. The problem was, in Newton’s time we did not have a value for G, making this impossible.

Newton thought that measuring the gravitational force of an object was not possible for objects smaller than planets and moons. However, this was not the case. Knowing the mass and density of the Earth would be incredibly useful for astronomers, as it would help them calculate the mass and density of other objects in the Solar System, as well as it being interesting to know in its own right. In 1772, the Royal Society set up the “Committee of Attraction” to figure this out.

Attempts were made to measure the average density of the Earth using a mountain in Scotland. The team showed that the sheer mass of Schiehallion attracted pendulums towards it. Measuring the pendulum’s movement and surveying the mountain, they were able to calculate a rough density of the Earth.

Advertisement

In 1797, however, we finally got the value of G, allowing us to calculate the mass of the Earth. Geologist Reverend John Michell had been working on the problem, but wasn’t able to finish on account of he became dead. Instead it fell to scientist Henry Cavendish, using Michell’s equipment, to perform the experiment.



Using a relatively simple setup (see above YouTube video from MrLundScience) Cavendish was able to measure the force between two metal spheres separated by a known distance. The gravitational force of the Earth exerted on the smaller ball could be measured by weighing it, and the density of the balls was also known. 

Looking at the ratio between the two forces revealed the mass of the Earth, about 5,974,000,000,000,000,000,000,000 kilograms (13,170,000,000,000,000,000,000,000 pounds), if you’re interested.

Deborah Bloomfield
Deborah Bloomfield

Related posts:

  1. Tennis-Scrappy Sakkari survives gruelling three-setter to beat Andreescu
  2. Cricket-NZ players reach Dubai after ‘specific, credible threat’ derailed Pakistan tour
  3. Accel, Tiger and Stripe’s COO back Mexico City-based Higo as it raises $23M for its B2B payments platform
  4. The Cat Flap Is Surprisingly Ancient, And Not The Work Of Isaac Newton

Source Link: In 1797, Henry Cavendish Used Two Small Metal Spheres To Weigh The Entire Earth

Filed Under: News

Primary Sidebar

  • Why Carl Sagan Was Way Ahead Of His Time And The Legacy He Left Behind
  • Why Were Pompeii Victims All Wearing Thick Woolly Cloaks In August?
  • We May Finally Know What Causes These Bizarre Bright Blue Cosmic Flashes
  • What’s The Biggest Rock In The World?
  • There Is A Very Simple Test To See If You Have Aphantasia
  • Bringing Extinct Animals To Life: Is Artificial Intelligence Helping Or Harming Palaeoart?
  • This Brilliant Map Has 3D Models Of Nearly Every Single Building In The World – All 2.75 Billion Of Them
  • These Hognose Snakes Have The Most Dramatic Defense Technique You’ve Ever Seen
  • Titan, Saturn’s Biggest Moon, Might Not Have A Secret Ocean After All
  • The World’s Oldest Individual Animal Was Born In 1499 CE. In 2006, Humans Accidentally Killed It.
  • What Is Glaze Ice? The Strange (And Deadly) Frozen Phenomenon That Locks Plants Inside Icicles
  • Has Anyone Ever Actually Been Swallowed By A Whale?
  • First-Known Instance Of Bees Laying Eggs In Fossilized Tooth Sockets Discovered In 20,000-Year-Old Bones
  • Polar Bear Mom Adopts Cub – Only The 13th Known Case Of Adoption In 45 Years Of Study At Hudson Bay
  • The Longest-Running Evolution Experiment Has Been Going For 80,000 Generations
  • From Shrink Rays And Simulated Universes To Medical Mishaps And More: The Stories That Made The Vault In 2025
  • Fastest Cretaceous Theropod Yet Discovered In 120-Million-Year-Old Dinosaur Trackway
  • What’s The Moon Made Of?
  • First Hubble View Of The Crab Nebula In 24 Years Is A Thing Of Beauty… With Mysterious “Knots”
  • “Orbital House Of Cards”: One Solar Storm And 2.8 Days Could End In Disaster For Earth And Its Satellites
  • Business
  • Health
  • News
  • Science
  • Technology
  • +1 718 874 1545
  • +91 78878 22626
  • [email protected]
Office Address
Prudour Pvt. Ltd. 420 Lexington Avenue Suite 300 New York City, NY 10170.

Powered by Prudour Network

Copyrights © 2025 · Medical Market Report. All Rights Reserved.

Go to mobile version